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Traditional imaging systems are resolution-limited by the Rayliegh Criterion which defines the
minimum separation distance at which two distant independently radiating point sources can still be
resolved. In this lab we will formulate the two point-source imaging problem quantum mechanically
and discover that the Rayleigh criterion does not constitute a fundamental physical limit to resolu-
tion. Instead, we will come to find that the information contained in any detected photon about the
separation between the point sources actually remains constant for all separation distances. Finally,
we will explore how a certain quantum measurement scheme called spatial mode demultiplexing
(SPADE) allows us to saturate these information-theoretic limits.
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I. INTRODUCTION

Historically, the task of imaging two point sources
has been used to derive and measure the resolution
limits of direct imaging systems. In this context, direct
imaging systems have technical meaning - they are the
class of optical systems that focus light from the object
plane onto a detector in a 1-to-1 fashion so as to form
an image. In the quantum imaging literature, this is
also referred to as Direct Detection. Due to Fraunhofer
diffraction effects, direct imaging systems with finite
apertures have a Point Spread Function (PSF) with a
characteristic non-zero width. Therefore, direct imaging
never truly achieves a 1-to-1 mapping of the object plane
onto the detector. Instead, the blur generated by the
PSF defines a resolution limit described by the Rayleigh
criterion.

The canonical two-point-source problem is setup as fol-
lows. Suppose we wish to image two distant incoherent
sources s1 and s2. To idealize the problem further, we
make a few simplifying assumptions.

• The sources have equal brightness - that is, the
mean number of photons emitted by each source
per unit time is the same.

• The rotational degree of freedom is fixed - that is we
know which axis in the object plane the two sources
are separated along. This allows us to formulate the
problem in 1D instead of over the entire 2D image
plane.

• The midpoint between the two sources is known
exactly and coincides with the optical axis of the
imaging system. So the only degree of freedom is
the source separation.

Under these assumptions, the task is to estimate the
angular separation θ between the two sources. For the
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remainder of this exploration, we will assume that the
PSF of the imaging system we are using can, to a good
approximation, be modelled with a gaussian PSF.

ψ(x) =
1

(2πσ2)1/4
e−( x

2σ )2

Here x is a position coordinate (units of radians) on
the image plane and σ is the standard deviation of the
PSF (units of radians). The Rayleigh criterion for such
a system says that the minimum resolvable angular sep-
aration θR is given by

θR ≈ σ

If the system is shift-invariant, then s1 and s2 register
a normalized intensity pattern over the image axis.

ν(x; θ) =
1

2

∣∣∣∣ψ(x− θ

2

)∣∣∣∣2 + 1

2

∣∣∣∣ψ(x+
θ

2

)∣∣∣∣2 (1)

The prefactors of 1/2 come from the sources having
equal brightness. We can understand the Rayleigh cri-
terion visually as the separation at which there are no
longer two distinguishable peaks in ν(x; θ) as shown in
figure 1
Note that ν(x; θ) effectively forms a probability den-

sity over the image axis for where we may detect a pho-
ton. There is a direct link between this probability dis-
tribution and the quantum mechanical description of the
field in the position representation which we will explore
shortly.

II. THEORY

A. Formulating a Quantum Field

Light is fundamentally a quantum phenomenon. As
such, a fully accurate description of the field at the im-
age plane involves assigning it a quantum state. In par-
ticular, we will describe the field as a mixed state using
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FIG. 1: Intensity distributions at the image plane for two
sources. On the left the sources are separated by more then
the Rayleigh Limit and we see two distinguishable peaks
(solid line) in the intensity distribution. On the right, the
sources are separated by exactly the Rayleigh limit
θ = θR = σ at which point we can no longer discern two
peaks in the intensity distribution.

the density operator formalism. Consider observing the
field over a short temporal interval so that at any point
within the interval the field is either in the vacuum state
ρ̂0 = |vac⟩⟨vac| with probability 1−ϵ or in a single-photon
excited state ρ̂1 with probability ϵ << 1. This short tem-
poral interval ensures that with overwhelming probabil-
ity we never find the field populated with more than one
photon. To a good approximation, the field can then be
described with the density operator,

ρ̂ ≈ (1− ϵ)ρ̂0 + ϵρ̂1

In the event that the field is in a single-photon excited
state, let |ψ1⟩ be the field state if the photon came from
s1 and |ψ2⟩ be the field state if the photon came from s2.
Since the sources are of equal brightness, the probability
that the photon came from either one is 1

2 . Thus,

ρ̂1 =
1

2
|ψ1⟩⟨ψ1|+

1

2
|ψ2⟩⟨ψ2|

B. Positive Operator Valued Measures (POVM)

To estimate the separation between the sources we
need to make a measurement of some kind on the quan-
tum state. In general, any quantum measurement is
defined by Positive Operator Valued Measure (POVM).

This is a set of measurement operators {Π̂k} with out-
comes {k} such that they sum to the identity on the
Hilbert space.

∑
k

Π̂k = Î

For a state ρ̂ the probability of observing outcome k
is,

FIG. 2: A diagram of a direct imaging setup. Photons are
registered spatially on a detector.

Pr(k) = tr(ρ̂Π̂k)

The most common type of POVM is called a Von Neu-
mann projective measurement, which consists of a set of
projectors formed from a set of orthonormal basis vec-
tors.

{Π̂k = |πk⟩⟨πk| : ⟨πi|πj⟩ = δij}

We will limit ourselves to Von Neumann projective
measurements for the remainder of the lab. As it turns
out, we will not need anything more sophisticated to re-
solve the two sources beyond the Rayleigh limit. One
convenient property of Von Neumann projective mea-
surements is that the observation probabilities reduce to
diagonal matrix elements by invoking the cyclic property
of the trace.

Pr(k) = tr(ρ̂Π̂k) = tr(ρ̂ |πk⟩⟨πk|) = ⟨πk|ρ̂|πk⟩

III. DIRECT DETECTION

Direct detection/imaging effectively registers photon
arrivals spatially over a detector. Thus its POVM is de-
fined as projectors on the position basis |x⟩.

POVMDD = {Π̂x = |x⟩⟨x|}

For a shift-invariant PSF, we can define the single-
photon excitation states in the position representation in
the following way.

|ψ1⟩ =
∫ ∞

−∞
ψ

(
x− θ

2

)
|x⟩ dx (2)

|ψ2⟩ =
∫ ∞

−∞
ψ

(
x+

θ

2

)
|x⟩ dx (3)

https://en.wikipedia.org/wiki/Density_matrix
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The position basis states |x⟩ should be physically
interpreted as a single-photon excitation at the location
x. We can express this using the raising operator
|x⟩ = â†δ(x′−x) |vac⟩. Then the wavefunctions ψ(x∓ θ

2 )
are understood to be a complex probability amplitudes
over all possible localized excitations.

Given that we detected a photon, the probability that
the arrived at position x is given by,

p(x) = ⟨x|ρ̂1|x⟩ =
1

2
| ⟨x|ψ1⟩ |2 +

1

2
| ⟨x|ψ2⟩ |2

Problem 1:
Write down the full expression for p(x) - the proba-
bility of detecting a photon at location x in direct
imaging. Also, show that the states |ψ1⟩ , |ψ2⟩ are
not orthogonal and plot | ⟨ψ1|ψ2⟩ |2 as function of θ.
What does this say about the distinguishability of
the two states? How would you expect the number
of detected photons needed to accurately estimate
the source separation to change with the separation
distance itself?

NOTE: The last part of this question wants you to
think about why resolution limits exist at all. If the
two states were perfectly distinguishable (orthogo-
nal), would we be able to determine the source sep-
aration exactly?

Problem 2:
With σ = 1, simulate direct detection of 105

photons over the x-axis for source separations
θ = [σ/10, σ/2, σ, 2σ, 10σ] by sampling from the
distribution you found in Problem 1. Plot a
histogram of the arrival statistics for each θ. How
does the number of peaks in the histogram change
when θ > σ versus when θ < σ?

HINT: You may find matlab’s normrnd and binornd
functions useful.

Problem 3:
Calculate the Maximum Likelihood Estimator
(MLE) θ̌DD of the source separation for each of the
simulated direct detection measurements generated

in Problem 2. Then, plot the fractional error θ̌DD−θ
θ

as a function of the source separation. What if
we now increase the number of detected photons
to 107? How does the accuracy of the estimation
change? Does this agree with your predictions
about the photon requirements made in Problem 1?

FIG. 3: A diagram of Spatial Mode Demultiplexing. The
field at the image plane is decomposed into a desired modal
basis with a spatial mode sorter. Then photon-counting is
performed on each modal bin.

HINT: You may want to look into the Expectation
Maximization algorithm described on Slide 19 of ref-
erence [6] as Gaussian mixtures do not in general
have a closed form expressions for their parame-
ter MLEs. You will need to implement an iterative
method for finding the MLE.

IV. SPATIAL MODE DEMULTIPLEXING

Instead of measuring our field state in the position
basis, we may choose to measure the field sate in
any arbitrary orthogonal basis {|ϕq⟩}. This involves
first defining a set of orthonormal modes {ϕq(x)} over
which we quantize the field. A measurement in this
basis amounts to observing a single-photon excitation
in one of the modes |ϕq⟩ = â†q |vac⟩. The process of
decomposing the field into a set of orthogonal modes
and then counting photons in each mode is a measure-
ment scheme known as Spatial Mode Demultiplexing
(SPADE). We will see how using SPADE with the
Hermite-Gauss (HG) modes allows us to better esti-
mate the source separation compared to direct detection.

The qth HG mode is given by the function

ϕq(x) =
1

(2πσ2)1/4
1√
2qq!

Hq

(
x

σ
√
2

)
e−

x2

4σ2

We can define the orthonormal HG basis {|ϕq⟩} as the
states given by,

|ϕq⟩ =
∫ ∞

−∞
ϕq(x) |x⟩ dx

in the position representation. Hence the POVM for pho-
ton detection in the HG states becomes,

POVMHG = {Π̂q = |ϕq⟩⟨ϕq|}
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The single-photon excitation states |ψ1⟩ and |ψ2⟩ can
be represented in the HG basis as,

|ψ1⟩ =
∞∑
q=0

(−θ/(4σ))q√
q!

e−
1
2 (θ/(4σ))

2

|ϕq⟩ (4)

|ψ2⟩ =
∞∑
q=0

(+θ/(4σ))q√
q!

e−
1
2 (θ/(4σ))

2

|ϕq⟩ (5)

Interestingly, in this representation |ψ1⟩ and |ψ2⟩ take
the form of coherent states over the HG modes with
displacements ∓θ/(4σ) respectively. Intuitively, this
can be understood as the quantum mechanical descrip-
tion of shifting the PSF off-axis. This interpretation is
only possible because the 0th HG mode is precisely our
PSF, |ϕ0⟩ =

∫∞
−∞ dxψ(x) |x⟩. Thus, the field state pro-

duced by shifted sources is just the displacement operator
D̂(±θ/(4σ)) |ϕ0⟩ applied to the 0th HG mode.
The probability of measuring a single-photon excita-

tion in the qth HG state is given by,

p[q] = ⟨ϕq|ρ̂|ϕq⟩ =
1

2
| ⟨ϕq|ψ1⟩ |2 +

1

2
| ⟨ϕq|ψ1⟩ |2

where square-brackets are used to denote a discrete
probability distribution.

Problem 4:
Find an expression for the probability distribution
p[q]. Do you recognize this distribution? What is
the mean? What is the variance?

Problem 5:
Simulate the detection of 105 photons under the
HG SPADE measurement scheme by sampling from
the distribution you found in Problem 4. Use the
same choice of σ and range of θ’s as in Problem 2.

HINT: You may find Matlab’s poissrnd helpful.

Problem 6:
Derive an expression of of the maximum likelihood
estimator θ̌HG for the source separation in terms of
the maximum likelihood estimator for the mean of
a Poisson distribution. Compute θ̌HG for each of
the simulated HG SPADE measurements generated
in Problem 5. Then, plot the fractional error

| θ̌HG−θ
θ | as a function of the source separation.

How does the error compare to the MLE error
plot you made in Problem 3. In particular, how
do the accuracy of the source separation estimates
differ in the ’super-Rayleigh’regimes where θ > σ
and the ’sub-Rayleigh’ regimes θ < σ for either
measurement scheme?

HINT: You should find that the MLE

θ̌HG = 4σ

√
Q̌

where Q is the mean of the Poisson distribution and

Q̌ =
1

N

∞∑
q=0

qnq

is its MLE for a measurement in which N photons
were detected in total and nq was the number of
photons detected in mode q.

V. FISHER INFORMATION

As you have found, the SPADE measurement scheme
in the HG modes manages to drastically outperform
direct imaging for estimating the source separation in
the sub-Rayleigh regime θ < σ. But the HG modes were
only one possible set of orthogonal modes that we could
have chosen out of an infinite number of modal bases.
For instance, instead of the Hermite-Gaussian functions
ϕq(x), we could have chosen the complex exponentials
fω(x) = e−iωx. In this case, our POVM would have
amounted to measuring the Fourier spectrum of the
scene. This begs an important question: ”How can we
quantify the efficacy of any POVM for estimating the
source separation?”

The Fisher Information is one such metric for quanti-
fying the quality of a POVM within the context of any
parameter estimation problem, not just the two point
source problem. Abstractly, the Fisher Information tells
us how much information a probability distribution con-
tains about the parameters that characterize the distri-
bution. Practically, this means that the Fisher Informa-
tion can tell us how much information a single detected
photon contains about the parameters of the scene from
which the photon was emitted. In the following sections
we will define the Fisher Information and try to build
some intuition for what it does and why it is useful.

A. Fisher Information Definition

Like all information measures, the Fisher Information
is defined in relation to a probability distribution. In gen-
eral, this can be a multi-variable distribution with several
distribution parameters. However, in this lab we will be
restricting ourselves to single-variable single-parameter
distributions p(y; θ) where y is the variable and θ is a
parameter of the distribution (not necessarily source sep-
aration). In this special case, the Fisher Information is
defined to be the variance of the score - the derivative of



5

FIG. 4: Two gaussian distributions are shown with the
same mean but different variances. We see that a sample
from a narrow gaussian (blue stem) is more likely to reside
close to the mean µ than a sample from a wide gaussian (red
stem). As a result, the narrow gaussian has a higher Fisher
Information on the the parameter µ compared to the wide
gaussian.

the log-likelihood with respect to the parameter.

I(θ) = Ep

[(
d

dθ
ln(p)

)2]

B. Example: Fisher Information of a Gaussian

Suppose we make a measurement of a random variable
Y that is normally distributed Y ∼ N (µ, σ2). We don’t
know the parameter µ, the mean of the distribution, but
we do know the variance σ2. How much does this random
sample of Y tell us about the mean µ of the distribution?

Before jumping into the math, lets think: if the gaus-
sian is very narrow then we likely drew a sample near
the mean. In this case, our sample contains a lot of in-
formation about the mean. Otherwise, if the gaussian
is very wide, then the random sample doesn’t say much
about the mean since we likely drew it from somewhere
further away. This is illustrated in figure 4. So we might
expect the Fisher Information I(µ) to somehow depend
inversely on the variance σ2. Recall that a gaussian is
defined as,

f(y) =
1√
2πσ2

e−
(y−µ)2

2σ2

Indeed, if we work through the Fisher Information for
µ in a gaussian distribution with known variance, we find

ln(f) = − (y − µ)2

2σ2
+ const.

d

dµ
ln(f) =

y − µ

σ2

I(µ) = Ef

[(
d

dµ
ln(f)

)2]
=

1

σ4
Ef [(y − µ)2]

=
1

σ4
V ar(Y )

=
1

σ2

As we intuited, the Fisher Information on the mean of
a gaussian random variable is inversely proportional to
the variance.

C. Cramer-Rao Lower Bound

The inverse of the Fisher Information is the Cramer-
Rao Lower Bound (CRLB). The CRLB states that for
any unbiased estimator θ̌ of a distribution parameter θ,
its variance is lower-bounded by

V ar(θ̌) ≥ 1

N
I−1(θ)

where N is the number of samples (measurements)
drawn from the distribution. A major goal of parameter
estimation efforts is to design measurements with very
low CRLBs. This way the estimators are more accurate
and consistent.

D. Quantum Fisher Information

For completeness, we provide the Quantum Fisher In-
formation (QFI) proposed by Helstrom [1] for a single
parameter, which is given by

QFI(θ) = Re{tr(L̂2
θ(ρ̂)ρ̂)}

where L̂θ is called the Symmetric Logarithmic Deriva-
tive (SLD) and satisfies the relation,

2
d

dθ
ρ̂ = L̂θρ̂+ ρ̂L̂θ

If we write the density operator in its eigenbasis,

ρ̂ =
∑
i

Di |ei⟩⟨ei|

then the SLD can be expressed in closed form as,

L̂θ =
∑

Dj+Dk ̸=0

2

Dj +Dk
⟨ej |

∂ρ̂

∂θ
|ek⟩
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The QFI represents the maximum amount of informa-
tion that we may extract about a parameter using any
measurement scheme. In other words, the QFI defines a
global information upper-bound (and hence the ultimate
lower-bound on the estimator variance) allowed by the
laws of physics. Crucially though, the QFI does not
necessarily tell us which measurement scheme achieves
this upper-bound.

The QFI for the source separation is,

I(θ) = 1

4σ2

which is derived in reference [5].

E. Fisher Information for Direct Detection

The probability distribution over the x-axis for a pho-
ton arrival is given by the gaussian mixture,

p(x) =
1

2

[
(

1√
2πσ2

e−(x− θ
2 )

2/(2σ2)+
1√
2πσ2

e−(x+ θ
2 )

2/(2σ2)

]
(6)

The Fisher Information of the source separation under
direct detection can be written explicitly as

IDD(θ) =

∫ ∞

∞
p(x)

[
d

dθ
(ln(p(x))

]2
dx (7)

=

∫ ∞

∞

1

p(x)

(
dp(x)

dθ

)2

dx (8)

Taking the derivative of the gaussian mixture, we find

dp(x)

dθ
=

1

4σ2

[
(x− θ/2)√

2πσ2
e−(x− θ

2 )
2/(2σ2) . . .

− (x+ θ/2)√
2πσ2

e−(x+ θ
2 )

2/(2σ2)

]
=

1

4σ2

[(
x− θ

2

)
|ψ(x− θ

2
)|2 −

(
x+

θ

2

)
|ψ(x+

θ

2
)|2

]
where ψ+

Problem 7:
Evaluate the Fisher Information under direct detec-
tion IDD(θ) for θ in range (0.1σ, 10σ) and plot its
normalized version IDD(θ)/I(θ) = IDD(θ)/(1/4σ2).
Also plot the Fisher information under the Hermite-
Guass SPADE measurement scheme.

Plot the Fisher information I(θ) as a function of
of the source separation θ by numerically evaluating
the integral for linearly spaced samples of θ over the
interval (0, 5σ]. How does direct detection compare

to SPADE in terms of Fisher Information when the
separation is below and above the Rayleigh Limit?

Hint: Evaluating the Fisher Information IDD(θ) an-
alytically for this gaussian mixture probability is in-
tractable. We can do it numerically though, just
make sure you finely discretize the x-axis in the re-
gions within 5σ of ±θ/2 for accurate results.

F. Fisher Information for HG SPADE

The Fisher Information of the source separation under
HG SPADE measurements can be written explicitly as

IHG(θ) =

∞∑
q=0

p[q]

[
d

dθ
ln(p[q])

]2

The probability of detecting a photon in the qth HG
mode is given by the Poisson distribution,

p(q) =
Qq

q!
e−Q Q ≡ θ2

16σ2
(9)

where Q is the mean of the Poisson distribution. From
this discrete distribution we can find,

IHG(θ) =
1

4σ2
(10)

Remarkably, we find that the Fisher Information for
the separation parameter is independent of θ. This means
that the Fisher Information of the source separation re-
mains constant for arbitrarily small separation distances
under the SPADE measurement scheme.

Problem 8:
Derive the Fisher Information for the HG SPADE
measurements IHG(θ). Show that it is equal to
the Quantum Fisher Information I(θ) proving that
the Hermite-Gauss functions are the optimal set of
modes in which to decompose the field for estimat-
ing source separation.
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Appendix A: Solutions to Lab Problems

1. Problem 1 Solution

The probability distribution over the image plane un-
der direct detection is,

p(x) =
1

2

[
(

1√
2πσ2

e−(x− θ
2 )

2/(2σ2)+
1√
2πσ2

e−(x+ θ
2 )

2/(2σ2)

]
(A1)

The inner product between the field states produced
by s1 and s2 is,

⟨ψ1|ψ2⟩ =
∫ ∞

−∞
ψ(x− θ/2)ψ(x+ θ/2)dx

=
1√
2π2

∫ ∞

−∞
e−

(x−θ/2)2

4σ2 e−
(x+θ/2)2

4σ2

= e−
θ2

8σ2 dx

Note that as θ → ∞ the inner product goes to 0. Hence
the sources are perfectly distinguishable from single mea-
surement if they are infinitely far away from each other.
This might be confusing as θ was defined to be an angle,
so its domain is [0, 2π). But really we’ve defined θ in
the paraxial regime which uses the small-angle approxi-
mation. So in fact, θ actually corresponds to a distance
ratio which has domain [0,∞). This ratio is the source
separation distance over the distance of the object plane
to the lens.

2. Problem 2/5 Solution 3. Problem 3/6 Solution
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4. Problem 4 Solution

p[q] =
Qq

q!
e−Q Q ≡ θ2

16σ2

5. Problem 7 Solution

6. Problem 8 Solution

p(q) =
Qq

q!
e−Q Q ≡ θ2

16σ2
(A2)

where Q is the mean of the Poisson distribution.

IHG(θ) =

∞∑
q=0

p(q)

[
d

dθ
(ln p(q))

]2

d

dθ
(ln p(q)) =

d

dθ
(−Q+ q ln(Q)− ln(q!))

= −Q′ +
q

Q
Q′

= (
q

Q
− 1)

2

16σ2
θ

= 2(q −Q)/θ

IHG(θ) =

∞∑
q=0

p(q)

[
d

dθ
(ln p(q))

]2
=

∞∑
q=0

p(q)

[
2(q −Q)/θ

]2
=

4

θ2

∞∑
q=0

p(q)(q −Q)2

=
4

θ2
V ar(q)

=
4

θ2
Q

=
1

4σ2

IHG(θ) =
1

4σ2
(A3)
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