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I. INTRODUCTION

Semiconductors like Silicon (Si), Germanium (Ge), and
Gallium Arsenide (GaAs) are materials with tunable elec-
trical conductivity. This tunability has made semicon-
ductors the basis of modern transistors and integrated
circuits used in digital technology. By association, the
practical impact of semiconductors on society has been
monumental. In basic science research, semiconductors
have played a pivotal role in the development of precise
scientific instruments and have assumed the center point
of many experiments in solid-state state physics.

In this work we explore the influence of temperature on
the electrical properties of an Aluminum-doped Germa-
nium semiconductor. Specifically, we determine the free
charge carrier density, the resistivity, and the charge mo-
bility of the semiconductor as function of temperature by
measuring the Hall coefficients using the Van der Pauw
technique.

II. THEORY

The theory of semiconductors in solid-state physics
is rooted in quantum mechanics. Unlike ideal gases or
single-atom systems in which we consider the interaction
between the electron with one nucleus, solids are gener-
ally composed of densely-packed atoms that collectively
impart an action on all of the electrons in the bulk of
the material. The atoms of the bulk self-organize into a
periodic structure called a lattice.

From a quantum mechanical perspective, the Hamilto-
nian for every electron in the bulk can be modelled with
a periodic potential. This periodic potential gives rise to
two important characteristics of solids.

1. The energy eigenstates of the Hamiltonian admit
delocalized wavefunctions. Thus, the energy state
of every electron in the bulk must be considered
simultaneously, as opposed individually from site
to site in the lattice. This will be important when
we consider the implications of the Pauli-Exclusion
principle.

2. The energy levels corresponding to each delocalized
eigenstate form energy bands where the density of
energy levels is high. These bands are separated by
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forbidden energy intervals called band gaps. The
occupation of these bands is central to the theory
of conductivity.

A. Energy Band Structures of Solids

The Origin of Band Structures

Why do band structures in appear in solids? Math-
ematically they arise from the Bloch Theorem, which
places constraints on the solutions to the Time-
Independent Schrodinger Equation for a periodic Hamil-
tonian. As a simple example, let us consider a 1-
dimensional atomic lattice where the lattice sites are sep-
arated by a distance a. Since the potential is periodic, it
satisfies the relation V (x+ a) = V (x). The Hamiltonian
can therefore be written as

Ĥ = − ~
2m

d2

dx2
+ V (x)

⇒ Ĥ(x) = Ĥ(x+ a)

The Bloch Theorem states that solutions to the time-
independent Schrodinger equation involving a periodic
Hamiltonian must satisfy

ψ(x+ a) = eiqaψ(x) (1)

where q = 2πn
Na . Here, N is the number of atoms in the

lattice and n ∈ Z. Modelling the periodic potential as a
Dirac Comb [See reference [1] for a complete derivation],
the central conclusion under the constraint of the Bloch
Theorem is given by the implicit Equation 2:

cos(qa) = cos(z) + β
sin(z)

z
(2)

Here, z = ka is directly related to the energy of an elec-

tron in the lattice via the wave number k =
√
2mE
~ . Ad-

ditionally, β is related to the strength of the uniform
Dirac deltas comprising the potential. As shown in Fig-
ure 1, the values of z (and thus the energy eigenvalues)
that can satisfy the implicit Equation 2 occur in bands

where f(z) = cos(z) + β sin(z)
z ∈ [−1, 1]. While the intra-

band energy levels are discrete, the difference in energy
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between neighboring levels is incredibly small for sam-
ple with many atoms. Therefore, each band is typically
approximated as a quasi-continuous energy spectrum. It
is important to emphasize the true discreteness of this
band though as the Pauli-Exclusion Principle is critical
to understanding conductivity.

FIG. 1: Shaded regions are indicative of energies for which
equality between f(z) and cos(qa) (shown here as cos(ka))
is possible. If we were to draw N equally spaced vertical
lines in each shaded band, the intersection between f(z) and
these lines would constitute a viable energy for that band [1].

Conductors, Insulators, and Semiconductors

The delocalized eigenstates for the electrons in a solid
have important implications for the conductivity. Recall
that the band structure of the solid describes the energy
eigenvalues associated with the delocalized eigenstates.
Therefore, while the number of energy levels available to
any one electron in the solid is enormous, the number of
electrons that may occupy these levels is similarly huge.
By the Pauli-Exclusion Principle, no two electrons in the
bulk can have identical quantum numbers. In the context
of solids, this implies that there may be at most two
electrons per energy level.

What does this mean for the conductivity? The flow
of current through a material involves the movement of
electrons through the material via quantum tunneling be-
tween adjacent lattice sites. This description may be
a source of confusion. The eigenstates for any electron
in the bulk are delocalized, yet we can still conceive of
an electron tunneling between lattice sites without is-
sue. Delocalized eigenstates simply tell us that we can-
not declare any single electron in the bulk as permanently
’paired’ to a specific nucleus. However, we can certainly
measure an electron to be located at say lattice site A at

one time and at a different lattice site B at a later time.
How it got from A to B is by tunnelling.

The propensity for an electron to tunnel is essentially
the conductivity, and it is affected by the availability of
’nearby’ energy levels. If all energy levels in a band are
occupied, then the electrons have a much lower propen-
sity for tunnelling because they must surmount the band
gap to reach the next available energy level. If there are
available energy levels within a band, then the electrons
have a high propensity for tunnelling since the spacing
between intra-band levels is very small.

Thus, the distinguishing feature between conductors,
insulators, and semi-conductors is the magnitude of the
energy gap between the so-called valence band and the
conduction band. This nomenclature is somewhat mis-
leading as the valence and conduction bands are actually
subsets of energy levels within the larger band structure
of the solid explored previously. The valence band is de-
fined as the set of lowest energy levels occupied by all
electrons when then solid is in the ground state. The
conduction band is simply the set of energy levels above
the valence band. Note that the interface between the
valence and conduction bands may or may not lie within
a larger energy band as shown in Figure 2.

For conductors like metals the energy gap between the
valence and conduction band is non-existent. Electrons
can easily tunnel between adjacent lattice sites since the
available energy levels are energetically ’nearby’. Semi-
conductors have a small energy band gap that can easily
be surmounted by applying an external electric field or
heat to excite the electrons into the conduction band,
which is unoccupied.

Insulators have a large energy band gap that is prac-
tically impossible to surmount. At the same time, all of
the levels in the valence band are occupied so an electron
cannot simply tunnel over to an adjacent cell and assume
a lower energy level in the valence band

FIG. 2: The conduction and valence bands for a conductor,
an insulator, and a semiconductor

Doping: Intrinsic and Extrinsic Charge Carriers

Unlike metals which have an abundance of free elec-
trons occupying a partially-filled conduction band, the
charge carriers in semiconductors are both holes and elec-
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trons. When the electrons in a pure crystalline semicon-
ductor are sufficiently excited to transition from the va-
lence band to the conduction band, these electrons and
the holes they leave behind are called intrinsic carriers –
they are charge carriers supplied by the semiconducting
material alone.

In contrast, doped semiconductors have impurities
that act as electron sources (p-type dopants) or electron
sinks (n-type dopants). These impurities supply addi-
tional energy levels near the conduction band and the
valence band that make the promotion of charge carriers
more energetically favorable. The charge carriers intro-
duced from doping a material are called extrinsic carriers
as they are spawned from a foreign agent that is not na-
tive to the semiconductor [2].

FIG. 3: An example of the energy level supplied by n-type
(left) and p-type (right) dopants. The concentration of the
dopant affects the position of these levels which live in the
band gap near the conduction and valence band of the
semiconductor respectively. By acting as a nearby electron
source or sink, they make the creation of charge carriers
more energetically favorable. Therefore the conductance of
the semiconductor can be tuned with the level of doping.

B. The Hall Effect

When a particle with charge q moving at a velocity v
passes through an external electric field E and magnetic
field B, the trajectory of the charge is deflected due to
the Lorentz Force.

F = q(E + v ×B) (3)

For current-carrying objects placed in a magnetic field
alone, these deflected trajectories give rise to an accumu-
lation of positive (holes) and negative (electrons) charges
on opposite boundaries of the object. The separation of
charge constitutes an electrical potential within the ob-
ject along the direction orthogonal to both the flow direc-
tion of the charge and the magnetic field. This is called
the Hall Effect and it stems from the the Lorentz Force.

FIG. 4: A diagram of the Hall Effect in the sample

C. Van der Pauw Equation and Resistivity

exp

(
− πd

ρ
RAB,CD

)
+ exp

(
− πd

ρ
RAD,CB

)
= 1 (4)

ρ =
πd

ln 2
· RAB,CD +RAD,CB

2
· f

(
RAB,CD
RAD,CB

)
(5)

where to a good approximation, we may take

f(x) =
1

cosh(ln(x)/2.403)

III. METHODS

A. Experimental Setup

1. Semiconductor Sample

The sample used in the experiments is a doped ger-
manium crystal that is cut out into a 10 mm ×10mm
square ±0.01mm with a thickness of 1.25mm ±0.01mm.
The four corners of the sample are outfitted with indium
contacts that serve as the electrical connection points for
the Van der Pauw technique. The melting point of in-
dium is approximately 456K so to avoid destroying the
solder connections, we limit the temperature range of our
experiment to within 90− 400K.

2. Temperature Control System

To vary the temperature of the Germanium semicon-
ductor, we mount our sample in an evacuated cryostat.
A diagram of the cryostat is shown in Figure 5. Inside
the vacuum chamber, the sample is secured to a cop-
per block with four probe wires connected to the indium
contacts. These wires run to a diode that interfaces with
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FIG. 5: A diagram of the temperature control system for
the Ge sample.

a computer program to record the temperature and per-
form the Van der Pauw measurements once every minute.
Also inside the chamber is a heater coil which we have
programmed to raise the temperature of the sample at a
rate of 5K per minute. The copper block is attached to a
rod that thermally couples the sample inside the vacuum
chamber to a liquid nitrogen reservoir outside the cham-
ber. By pouring liquid nitrogen into the reservoir, we
cool the sample down to 90K. Subsequently, we warm
the sample by turning on the heater coil and boiling off
the liquid nitrogen.

B. Magnetic Field Control

The sample is placed in a quasi-uniform magnetic field
generated by an electromagnet. To eliminate orientation
bias, the Van der Pauw measurements are collected un-
der three different magnetic field regimes: One where
the magnetic field points in the positive z-direction, one
where the electromagnet is turned off (zero-field), and
one where the magnetic field points in the negative z di-
rection. We do this for two sets of experiments involving
different field strengths; 40 Gauss and 100 Gauss.

An important consideration in this method of alter-
nating field direction is hysteresis. Magnetic hysteresis is
the tendency for ferromagnetic materials to remain mag-
netized after being placed in an external magnetic field
due to the alignment of magnetic domains. If the ex-
ternal field strength is insufficient to align the magnetic
domains of the solenoid to saturation, then when the field
direction is alternated the true magnetic field may under-
shoot the target field strength. We account for this by
also measuring the magnetic field strength in the z direc-
tion with a Gaussmeter every time we collect a series of
Van der Pauw measurements.

C. Van Der Pauw Technique

Calculating the Hall Coefficient RH from Measured
Quantities

n-type:

RH =
EH
JxBz

=
1

en

FIG. 6: The Hall Coefficients as a function of temperature.
At low temperatures (¡ 250K), the Hall Coeffecient is high
indicating a low charge carrier density. In contrast, once the
electrons are sufficiently excited at high temperatures, the
Hall coefficient drops drastically indicating the promotion of
charger carriers to the conduction band. Regions where the
Hall Coefficient transitions from positive to negative
indicates a change in the sign of the dominant charge carrier
(from electrons to holes).

We measure the Hall voltage for a supplied current
(UH , Ix) ∈ {(Uac, Ibd), (Udb, Ica)} and a known magnetic
field Bz

where

UH = sEH

Ix = sdJx

The trans-resistance RT we can recover from these
measurements is related to the Hall Resistance

RT =
UH
Ix

=
sEH
sdJx

=
EH
dJx

= RH
d

Bz

p-type:

RH =
UHBz
dIx

These quantities are all known either through measure-
ment or prescription.

IV. ANALYSIS

ACKNOWLEDGMENTS

The author wishes to first acknowledge the amazing
support of his colleague, Zachary Ross, for engaging in
technical discussions that proved deeply instructive. The
author also wishes to acknowledge the support and enthu-
siasm provided by UC Berkeley’s Physics 111B professors
and Teaching Assistants amidst a trying academic year
hampered by a global pandemic.



5

FIG. 7: The Resistivity as a function of the temperature.
We can see that the resistivity decreases drastically after a
peak threshold at 250K.
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