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This work is an exploration in non-linear dynamics and chaos. Our system of focus is the PN
junction - a driven oscillatory circuit containing a semiconducting diode with a non-linear response.
Of principal interest is the relationship between the chaotic parameters and the dynamical variables.
For the PN junction these are, respectively, the amplitude of a tunable voltage source and the elec-
trical current of the circuit. The dynamics of this system are analyzed in simulation. In particular,
we numerically integrate the dynamical equations of the circuit and explore the periodicity of state
space orbits. Bifurcation diagrams plotted over a progression of the chaotic parameter demonstrate
sequential period doubling and cycling between chaotic and stable bands. Informed by these visu-
alizations, we identify a strange attractor for the circuit. We also explore delay time embeddings of
the current in two and three dimensions. Finally, we compute the largest Lyapunov exponent for
different values of the chaotic parameter.
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I. INTRODUCTION

Non-linear dynamics is the study of complex systems
whose temporal evolution is governed by non-linear equa-
tions. These equations are often difficult to solve analyt-
ically, leaving scientists to appeal to numerical methods
for understanding them. The subclass of dynamical sys-
tems that are described by solvable differential equations
have been deeply illuminating. However, nature often
challenges us with dynamical systems that elude all ef-
forts to describe them in closed form. Even the dynamics
of the simple pendulum is in truth non-linear. Only after
making a small-angle approximation can one recover the
differential equation of a harmonic oscillator.

’Chaos’ is an emergent phenomena of non-linear dy-
namics. Here the term refers to dynamical systems char-
acterized by three features: 1) Their evolution is ape-
riodic (trajectories in state space do not repeat them-
selves), 2) they are highly sensitive to changes in ini-
tial conditions, 3) they tend to evolve towards certain
bounded regions of state space called attractors. It is
important to emphasize that chaotic systems are not
stochastic - on the contrary they follow deterministic
rules. However, under these rules, it quickly becomes
difficult to predict the evolution of a chaotic system with
any precision since small uncertainties in the initial con-
ditions grow exponentially quickly.

The techniques for studying non-linear dynamics have
made headway in virtually every scientific field. In me-
teorology, the Lorenz equations proposed for modelling
atmospheric convection gave birth to modern chaos the-
ory [1]. In biology, the transport of gene mutations across
generations was found to follow the Huxley-Fisher non-
linear diffusion equation [2]. In environmental science,
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the interplay of natural resource extraction and popula-
tion growth has been successfully modelled and analyzed
as a non-linear system [3]. Interesting behavior has been
uncovered in all of these non-linear models using the tech-
niques employed in this work.

In this study, we investigate a continuous-time non-
linear system called the PN junction circuit. The current
oscillations in this circuit are rich in chaotic behavior
and lie at the focus of the study. Numerical methods
are used to evaluate state space trajectories, generate
bifurcation diagrams, plot time delay embeddings, and
compute Lyapunov constants.

II. THEORY

A. Preliminaries

1. State Space

A dynamical system is expressed in terms of its dynam-
ical variables. These are the time-dependent quantities
apparent in the system’s equations of motion (e.g. the
x, y, and z coordinates of a moving body and the com-
ponents of its momentum px, py, pz). The term ’motion’
is used here as a synonym for ’change’. The state x of
a system is simply a list of all dynamical variables at a
given instant in time:

x = [x[1], x[2], ..., x[m]]

The state space (or phase space) is defined by a set of
all states available to the system Rm and an evolution
operator φ : Rm → Rm that propagates a state in time.
The evolution operator must satisfy the property that

φt(φs(x)) = φt+s(x)
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A state space can also be ordained with a probabil-
ity measure over all states. Though discussion of this
measure is beyond the scope of our work.

2. Flow for Continuous-Time Systems

For a continuous-time system, the evolution operator
φ can be understood by considering a vector field F(x)
over the state space. The direction of this vector field at
any point represents the instantaneous time-evolution of
the system. Consequently, the components of F are the
time derivatives of the state variables.

F1 = ẋ[1] = f1(x)

F2 = ẋ[2] = f2(x)

...

Fm = ẋ[m] = fm(x)

Note that each of these equations are autonomous by
requirement - they have no explicit time-dependence.
This is important because it allows us to express the evo-
lution of the system in terms of its state alone. We can
express the vector field compactly as,

F(x) = ẋ|x

The evolution operator φ : x(0) → x(τ) takes a point
in state space and maps it to another point in state space
that represents the system at a later time τ . Formally,

φτ (x) =

∫ τ

0

F(y(t))dt , y(0) = x (1)

The locus of points generated by applying the evolu-
tion operator over infinitesimal time intervals forms a
trajectory through state space. Intuitively, this trajec-
tory follows the vector field. The flow diagram over state
space shown in Figure 1 helps illustrate this idea.

3. Lyapunov Exponents

The central tenet of chaotic systems is that small per-
turbations to initial conditions produce quickly diverging
trajectories in state space. It is possible to characterize
the rate of this divergence with Lyapunov exponents.

Consider two close initial states x0 and x0+ε. Our goal
will be to quantify the rate at which the perturbation ε
grows. Taylor expanding the perturbed initial state gives,

φt(x0 + ε) = φ(x0) + J(t)ε+O(|ε|2)

FIG. 1: A computed flow over a the state space of the PN
junction. The two state variables of interest are the current
I and the voltage drop over the diode Vd. The flow vectors
are computed using Equation 8. The bounds of the x-axis
span simulated saturation current for the diode. For Vd > 0
the system appears to be convergent as all vector field
directions point inward towards a region of fixed points.For
Vd ¡0 the flow cycles back into the convergent region. Hence
the dynamics for the portion of state space shown are
convergent. Indeed the vector field was rendered with a
small choice of the chaotic parameter. Higher values would
generate a more aggressive flow field.

where J(t) is the Jacobian matrix given by the lineariza-
tion of φt about x0,

J(t) =
∂φt(x0)

∂x0
=
∂x(t)

∂x(0)
(2)

Jij(t) =
∂xi(t)

∂xj(0)
(3)

We see that the perturbation ε gets transformed as
J(t)ε. The eigenvalues of J(t) express the rate of diver-
gence between nearby trajectories along orthogonal di-
rections in Rm. The determinant of J(t) describes the
local contraction/expansion of state space (dissipation).
Since the determinant is the sum of the eigenvalues, a
positive eigenvalue sum indicates that the distance be-
tween nearby trajectories grows exponentially quickly. If
their sum is negative, then nearby trajectories converge
exponentially quickly. Formally, the limit of these eigen-
values are the Lyapunov exponents shown in Equation
4.

λk = lim
t→∞

1

t
log(kth eigenvalue of J(t)) (4)
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This definition of the Lyapunov exponents is analyti-
cally useful in that it is written in terms of computable
quantities [4]. However the interpretation of the limit
here is not obvious. An more easily interpreted formula-
tion of the Lyapunov exponents is,

lim
t→∞

lim
|ε0|→0

1

t

|ε(t)|
|ε0|

(5)

where ε(t) = J(t)ε is the perturbation at a later time t.
The interpretation of the limits is now more clear. We
wish to evaluate how an infinitesimal perturbation in the
initial conditions compares to itself looking ahead far into
the future.

4. Time of Unpredictability

Suppose the state of a chaotic system is experimentally
measured at time t0 to a precision ε. One question we
may ask is ’how long must we wait until nothing is known
about the state?’ This question motivates an alterna-
tive information perspective of chaos that is particularly
pertinent to numerical simulation of continuous-time dy-
namical systems. .

Let us first address this question. From an information
perspective, the sum of the positive Lyapunov exponents
can be thought of as the rate of information loss hµ about
the state. After all, we saw from derivation of Equation
4 that nearby state space trajectories diverge along the
directions of the eigenvectors of J(t) corresponding to the
positive Lyapunov exponents. Suppose the measurement
precision ε is one part in 2n. The number of bits required
to express a measurement is the information I known
about the system I(ε) = − log2 ε. The rate of information
loss is hµ[bitssec ]. Therefore the time to unpredictability of
the system becomes

τu =
I(ε)

µh
=
− log2 ε

µh
=

n

µh

Many numerical ODE solvers like the ones used in this
work simulate the dynamics of the PN junction instan-
tiate a small discrete time step with which to propagate
the dynamical equations. If this time step is greater than
the time to unpredictability, then the validity of the in-
tegration is dubious.

B. The PN Junction

The PN junction circuit shown in Figure 2. We con-
sider two dynamical state variables: the current through
the circuit I and the voltage drop across the diode Vd.
Thus the state is defined as x = [I, Vd]. The exploded
view of the circuit diagram demonstrates how the diode
can be modelled a current source Id and a capacitor C

FIG. 2: A circuit diagram of the PN junction. Without the
diode, this circuit is the well-known driven damped
oscillator RL circuit which has analytic solutions. The
non-linearity introduced by the diode naturally brings forth
chaotic behavior in this system.

in parallel. Both of these elements have a non-linear de-
pendence on Vd given by equations 6 and 7 respectively.

Id(Vd) = Isat(exp (
qVd
kT

)− 1) (6)

C(Vd) =

C0 exp ( qVd

kT ) Vd > 0
C0√
1− qVd

kT

Vd < 0 (7)

Here Isat is the saturation current of the diode, q is the
charge of an electron, and kT is the Boltzmann constant
times the temperature. The system is driven by an oscil-
lating voltage source Vo

Vo(t) = V0sin(ωt)

= V0sin(θ)

where, to eliminate the explicit time dependence, we have
introduced a new state variable θ = ωt. Since θ is now
another dynamical quantity it is included in our state
vector x = [Vd, I, θ]. Applying Kirchoff’s Law to the
circuit and using the equations for a resistor, a capacitor,
and an inductor [see Appendix Section A for a complete
derivation] one finds the dynamical equations 8a, 8b, 8c
for the circuit.

V̇d =
I − Id(Vd)
C(Vd)

(8a)

İ =
V0 sin(θ)− Vd − IR

L
(8b)

θ̇ = ω (8c)
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FIG. 3: Circuit current, frequency spectrum, and phase
space trajectories for period 1 and 2 orbits. The driving
amplitudes were set to 0.019 and 0.13 respectively.

FIG. 4: Circuit current, frequency spectrum, and phase
space trajectories for period 4 and 8 orbits. The driving
amplitudes were set to 0.405 and 0.4137 respectively.

FIG. 5: The attractor of the PN junction (blue region)
found by tracing an aperiodic chaotic trajectory over 60
million timesteps. 60 thousand cycles of the return map are
plotted in red demonstrating interesting structure.

III. NUMERICAL METHODS AND ANALYSIS

Several analytical methods have been devised for char-
acterizing chaos. Most provide a geometric representa-
tion of the system dynamics. In this work we simulate
the PN junction computationally and investigate how the
drive amplitude V0 affects the evolution of the state. The
Pynamical package in Python package offers several vi-
sualizations tools for non-linear dynamics that we utilize
in the following sections.

A. State Space Trajectories and Spectral Analysis

Numerical integration of the dynamical equations al-
lows us to trace trajectories through the state space.
When the system is not in a chaotic regime, these trajec-
tories settle into closed loops that befit the name ’orbits’.
The PN junction simulation was configured to evolve for
60 cycles of the sinusoidal drive before observation to
avoid capturing transient dynamics.

Figures 3 and 4 show transitions in the periodicity of
stable state space trajectories for different driving ampli-
tudes. A time series of the current and its Fourier Trans-

formed are also shown to corroborate the periodic trajec-
tories. As shown, there is a correspondence between the
periodicity of the orbits, demarcated by the number of
return map samples (red dots), and the number of promi-
nent peaks that appear in the frequency spectrum of the
current.

Inspecting the Period 4 and Period 8 orbits, it is clear
that they share qualitative similarities. The narrow sepa-
ration of the trajectory lines suggests that the drive volt-
age is near a bifurcation point. Identifying these precise
bifurcation points is the topic of upcoming sections.

Figure 5 showcases a chaotic trajectory traced over
tens of thousands of drive cycles. The dense population
of state points elucidates a bounded blue region called an
attractor. Initializations of the PN junction that fall in
this region are guaranteed to remain in it no matter how
the chaotic the resulting trajectory. Overlayed in red are
the return map samples. This seemingly continuous lo-
cus of red points is representative of the aperiodicity of
the chaotic trajectory. Had the trajectory been periodic,
the number of red points would be finite. Complement-
ing this notion, Figure 6 contains the return map itself.
The return map shown is analogous to a Poincaré Map.
Though instead of sampling the state at its intersection
with a prescribed manifold in state space, the return map
samples the trajectories at periodic time intervals. In the
case of the PN junction it is natural to sample the cur-
rent along the state trajectory at time intervals equal to
the period of the sinusoidal drive.

B. Bifurcation Diagrams

Previously we showed that the periodicity of stable or-
bits could be observed from the state space trajectories
and from the frequency spectrum of the dynamical vari-
able. However, with these approaches alone it is difficult
to register how the periodicity of the orbit varies with the
chaotic parameter. Figure 7 presents a bifurcation dia-
gram, which plots the return map samples against a scan
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FIG. 6: An return map of a chaotic trajectory periodically
sampled at rate ω. Note the topological similarity between
the return map and the structure in Figure 5. Return maps
reduce the dimensionality of the attractor in state space.

over a narrow region of the drive voltage. This region
exhibits orbits with rapidly growing complexity. As the
drive amplitude increases, the bifurcations become more
frequent, tending towards chaos. Remarkably, a continu-
ous chaotic parameter like the drive amplitude generates
discrete behavior in the system dynamics.

FIG. 7: A bifurcation diagram for the PN junction over a
progression of drive amplitudes. The periodicity of the
stable states increases in a fractal manner until reaching
chaotic bands. Interspersed between these bands are regions
of renewed periodicity.

Estimating the Feigenbaum Ratio

One common line of analysis stemming from bifurca-
tion diagrams is calculating the Feigenbaum Ratio. This
ratio relates the length of the intervals between bifurca-
tions, which has been shown to converge. Let an the
value of the chaotic parameter at the nth bifurcation .
The Feigenbaum ratio evaluated at an is defined as

δ = lim
n→∞

an−1 − an−2
an − an−1

As n→∞, this sequence tends towards a finite constant
γ ≈ 4.669 known as the Feigenbaum constant. Below we
list the first five bifurcation points for the PN junction.

an Amplitude δ
a1 0.094875 –
a2 0.31817 –
a3 0.3842 3.38172043
a4 0.3931 7.41910112
a5 0.3952 4.23809524
...

...
...

TABLE I: The first five bifurcation points for the PN
junction and their corresponding Feigenbaum ratios are
computed. With further samples of the bifurcation points
this number will continue approaching the γ.

C. Delay Time Embedding

A Delay time embedding is another visualization tool
for understanding state space trajectories and identifying
chaotic attractors if only one of the dynamical variables
is accessible. Here we showcase a delay time embedding
of the PN junction current in a chaotic trajectory for two
[Figure 8] and three dimensions [Figure 9].

D. Lyapunov Exponents for the PN Junction

Computing the Lyapunov exponents defined in equa-
tion 4 for continuous-time systems has been an area of
active research [5], [6], [7]. While a multi-dimensional
state spaces have several Lyapunov exponents, typically
the largest Lyapunov exponent (LLE) provides a suffi-
cient characterization of the chaos in the system. In this
work we employ the nolds python package to compute
the LLE from a time-series of the circuit current using
the Rosenstein Algorithm [7].

IV. CONCLUSION

The PN junction provides a rich physical case study
for investigating non-linear systems and chaos. In this
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FIG. 8: A 2D embedding of the circuit current time-series.
The current samples correspond to the chaotic trajectory
through state space of the PN junction shown in 5. The
distinct point colors distinguish between which cycle of the
drive frequency they occur in.

FIG. 9: A 3D embedding of the circuit current time-series.

work, we model the dynamics of the PN junction com-
putationally. The fixed parameters for the dynamical
simulations can be found in Appendix B. Our work be-
gins with an overview of the mathematical formalisms for
describing dynamical systems and the canonical methods
for studying non-linear dynamics within this framework.
Specifically, we present the state space, flow, and the Lya-

FIG. 10: Shown are the LLE overlayed onto the the
bifurcation for a coincident range of the drive amplitude. As
we can see the LLE is mostly negative for the regions where
the bifurcation plot is stable. Near the bifurcation points
the LLE exhibits a pronounced negative spike. This is
explained by the merger of a stable and unstable fixed point.
Around 0.45 Around 0. In contrast, the Lyap the bifurcation
points we note dips in the tic regin

punov exponents. The methods discussed include state
space trajectories, bifurcation diagrams, delay time em-
beddings, and return maps. Taking the amplitude of the
sinusoidal drive as our chaotic parameter, we proceed to
analyze the PN junction using the aforementioned meth-
ods and report three principal findings. First, we char-
acterize an for the PN junction. This attractor predomi-
nantly restricts the system to negative values of Vd. Sec-
ond, we identify period doubling points and the onset of
chaos for different intervals over the drive voltage. Third,
we compute the largest Lyapunov exponent for different
drive voltages and illustrate its approximate correspon-
dence with the bifurcation plot.

One intriguing aspect of chaos that was not addressed
in this work is the fractal geometry of attractors. The
correlation dimension of an attractor provides a dimen-
sionality measure of the subspace of state space occupied
by a chaotic dynamical system. The correlation dimen-
sion can be found by exploring time delay embeddings of
increasing dimension and determining how the average
number of points within a small hypercube scales. Such
investigations present a compelling direction for future
study.
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Appendix A: Deriving Dynamical Equations for PN
Junction

The equations for the voltage across a resistor, a ca-
pacitor, and an inductor are given by

VR = IR =
dQ

dt

Vc =
1

C
Q

VL = L
dI

dt
= L

d2Q

dt2

Applying Kirchoff’s law to the PN junction circuit
gives us

Vo(t) = Lİ + Vd +RI

We can reorder the terms to immediately determine
Equation 8b

İ =
V0 cos θ − Vd −RI

L

Next, we solve for V̇d by examining our model for the
diode. We know from the voltage equation for a capacitor
(listed above) that charge over the capacitor in the diode
is Q = CVd. Therefore, the current through the capacitor
is Q̇ = Ic = CV̇d. By conservation of charge, the current
entering the diode is given by the sum,

I = Ic + Id(Vd)

Hence,

I = CV̇d + IdVd

⇒ V̇d =
I − IdVd

C

which is Equation 8a. Finally, since θ = ωt by defini-
tion, θ̇ = ω which is Equation 8c.

Appendix B: Simulation Parameters

The fixed simulation parameters of the PN junction
are quoted here for reference.

The resistance and the inductance were chosen so that
the resonance of the RL circuit was approximately of
order one.

Appendix C: Drive Frequency ω as a Chaotic
Parameter

Parameter Variable Name Value

Resistance R 0.2
Inductance L 1.0

Drive Frequency ω 1.0
Diode Saturation Current Isat 20.0

Boltzmann Energy Normalization kT 0.025
Initialized Diode Voltage Vd 0.1

Initialized Circuit Current Vd 0.1

TABLE II: Fixed simulation parameters and their values.

FIG. 11: Preliminary results of a spiral-tube strange
attractor found in a chaotic trajectory incited by
modulating the drive frequency. Here ω = 100 and the drive
amplitude were set to V0 = 15. Interestingly, modulating the
drive amplitude had the effect of rotating the tube about its
short axis.
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