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This study explores the relationship between the resonance frequency of a Helmholtz resonator
and two of its geometric parameters: the cavity volume and the neck length. Spectrograms of the
audio signal generated by different resonator geometries are collected and used in a spectral analysis
of the resonant frequencies. Power law fits of the resonance frequencies measured for different cavity
volumes and different effective neck lengths yield νr(V ) = 4.04 ·V −0.50 and νr(Le) = 18.46 ·Le−0.74

respectively. Theoretical predictions are in greater agreement with the power law relationship found
for the cavity volume than for the neck length. An analysis of the measurement error and the
damping (Q factor) of the Helmholtz resonator are also provided.
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I. INTRODUCTION

Helmholtz resonators offer an accessible experimental
platform for exploring the physics of acoustic resonance.
These objects can be generally described as a rigid hol-
low enclosure with a single opening. Typically, the en-
closure is equipped with a hollow neck with the open-
ing at one end [Figure 1]. Blowing air over the opening
causes the air column within the neck to oscillate, cre-
ating sound. The structural simplicity of Helmholtz res-
onators explains their ubiquitous presence among house-
hold items. Bottles, cups, and bowls, as well as instru-
ments like acoustic guitars and pan flutes are all exam-
ples of Helmholtz resonators. Even a moving car with an
open window can be classified as a Helmholtz resonator.

Historically, these objects were of interest to musicians
as they provided a means of passively amplifying their in-
struments. Likewise, scientists like Lord Rayleigh have
found them fascinating for understanding the physics of
sound propagation [1]. These structures even appear in
nature. Certain bird species use tree hollows to am-
plify their songs while certain cricket species have evolved
anatomically with resonators to amplify mating calls [2].
Today Helmholtz resonators are used in the exhaust man-
ifold of combustion vehicles for attenuating the noise of
the engine [3]. There is also ongoing research on how to
apply the theory of Helmholtz resonators to aircraft for
similar noise purposes [4].

This work explores the effect of varying two geometric
features of the Helmholtz Resonator: (a) The volume of
the cavity, and (b) the length of the neck. The acoustic
resonance frequency of the device is measured against
these geometric parameters.
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II. THEORY

The Helmholtz resonator can be modelled as a block-
spring system. The volume of the air column in the neck
is the mass m = ρ(AL) [Figure 2] while the periodic
compression of this air column behaves like a spring and
produces sound. The natural oscillation frequency for a
block-spring system with spring constant k is known to
be

νr =
1

2π

√
k

m
(1)

Treating air as an ideal gas and acoustic resonance as
an adiabatic process [see derivation in Appendix A], the
resonance frequency of a Helmholtz resonator is,

νr =
c

2π

√
A

V Le
(2)

where c is the speed of sound in air (343 m/s at STP),
A is the area of the opening, V is the volume of the
resonator, and Le is the effective neck length,

Le = L+ α
√
A (3)

Here L is the neck length and α is a constant related to
the geometry of the opening. In previous work by Lord
Rayleigh and William Strutt [1], the correction factor of
a cylindrical neck with a flanged circular opening is found
analytically to be α = 16

3π3/2 ≈ 0.96. All configurations
of the Helmholtz resonator used in experiments feature
a circular opening.

III. MATERIALS AND METHODS

The Helmholtz resonator used in this study was a glass
Hornitos Tequila bottle which was chosen for its simple
shape and loud resonance characteristics. The cavity of
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FIG. 1. A schematic of a typical Helmholtz resonator and its
relevant geometric parameters.

FIG. 2. A diagram of the Helmholtz resonator modelled as a
mass on a spring.

the resonator approximates a rectangular prism and the
neck is a cylinder that leads to a flanged circular open-
ing. The neck has length L = 42.8 ± 1 mm and the
opening has diameter D = 18.5 ± 1 mm. To stimulate
resonance, an experimenter orally blew over the opening
of the glass bottle. Simultaneously, a spectrogram of the
acoustic signal was captured on an iPhone 6 using the
commercially available application, SpectrumView. All
experimental measurements were conducted in a sauna
(at STP) which offered an environment with good sound
isolation to prevent echo and suppress background noise.
The aforementioned steps provide a basic overview of the
experimental procedure and relevant materials. Next we
describe how the geometric parameters of the resonator
were modulated.

A. Modulating the Resonator Volume

The total volume of the empty resonator cavity was
measured to be 750 ± 1 mL by filling the bottle to the
base of the neck with water. To change the volume to
a desired level, water was either added or removed from
the cavity and left on a flat surface to settle. As an
incrompressible fluid, water offers a simple way of mod-

FIG. 3. Experimental materials and the Helmholtz resonator
shown with (top-left) no extension, (top-right) one extension,
(bottom-left) two extensions, (bottom-right) three extensions.
The volume of the resonator was adjusted by filling the bottle
with water to desired levels.

ulating the volume while preserving the rigidity of the
active cavity. The cavity volumes explored in this study
range from 0 − 750 mL. Note that in the case of 0 vol-
ume (i.e. the bottle is filled until the base of the neck),
the Helmholtz resonator transitions in regime. The res-
onator can no longer be thought of as a cavity with a
neck. Instead, the neck itself becomes the cavity making
the resonator a pipe with one opening. Therefore, we
do not expect the resonance frequency at zero cavity vol-
ume to be comparable to the regime of the original bottle
anatomy. For this reason, the zero volume measurements
are omitted in the analysis.

B. Modulating the Resonator Neck Length

The neck length of the resonator was increased by
stacking cylindrical copper extensions on top of the bottle
opening. The extensions were tapered at one end to en-
able pressure-fitting one extension into the next to form
a rigid stack. The untapered end was chosen to match
the diameter of the bottle opening. However, the tapered
end constricts to a smaller diameter and therefore modi-
fied the inner geometry of the neck. With the extensions,
the inner geometry of the neck departs somewhat from
a smooth cylinder and acquires ribbed features. Never-
theless, the aperture of the resonator remains constant
across experimental configurations.

TABLE I. Copper extension Diameters

with Taper without Taper
19.8± 0.5 [mm] 15.9± 0.5 [mm]
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C. SpectrumView Configuration and Calibration

The measurements collected in this study are spectro-
grams of the audio signal produced by the Helmholtz
resonator [Figure 4]. These spectrograms were recorded
using the SpectrumView application available for iPhone.
The application was configured to acquire samples of the
audio signal at 16,000 Hz. By the Nyquist Theorem this
provided us with a frequency range of 0-8000 Hz. To pre-
vent aliasing, SpectrumView defaults to low-pass filtering
the audio signal with a Blackman window [see Appendix
A Equation B1 and Reference [5]]. This window exhibits
a low-pass threshold at 0.12 · νmax where νmax = 8000
Hz is the upper-limit of the frequency range. Therefore,
the filter attenuates all frequencies above 960 Hz. All the
resonance frequencies used in our analysis fall below this
threshold and therefore are not attenuated.

To ensure the fidelity of our spectral analyzer, the
SpectrumView application was calibrated by playing a
sine wave at 750 Hz through a laptop speaker and assert-
ing agreement with the recorded spectrogram. A spec-
trogram of the ambient noise in our test environment was
also collected to verify that the background signature was
negligible.

FIG. 4. Three examples of spectrogram measurements cap-
tured with SpectrumView. As a pre-processing step, the
measurement time intervals for each spectrogram were cut
and spliced together to remove moments in which the exper-
imenter was between breaths.

IV. ANALYSIS

A. Spectral Analysis and Resonance Frequencies

To analyze how volume and neck length affects the res-
onance frequency of the Helmholtz resonator, each mea-
sured spectrogram was converted into a spectral power
distribution by averaging the spectrogram over time. The
resonance frequencies are then easily identified from the
peaks of the spectral power curves.

Figure 5 shows the spectral power distributions of
the resonator for different cavity volumes with the neck
length held constant at 42.8 mm. Figure 6 shows the

FIG. 5. Spectral power distributions for the Helmholtz res-
onator configured with different volumes. The curves were
constructed by time-averaging the raw spectrograms acquired
for each cavity volume. Upon close inspection, secondary
peaks appear at higher frequencies suggesting the presence
of harmonics.

FIG. 6. Spectral power distributions for the Helmholtz res-
onator configured with different neck lengths.

spectral power distributions produced by the resonator
for different neck lengths with the cavity volume held
constant at 750 mL. These graphs are plotted on a log
axis to make the peaks more visually distinguished.

Form these spectral power distributions, we parse the
resonance frequencies corresponding to the volume and
neck length modulation experiments. These frequencies
are plotted against their respective geometric parameter
in Figures 7 and 8. From equation 2 we see that the
resonance frequency varies proportionally to the inverse
square root of the volume V and of the effective neck
length Le. Guided by this theoretical background, we
apply a curve fit to a power law of the form f(x) = Bxb

where B, b are the fit parameters and x ∈ {V, Fe} is the
geometric parameter modulated in experiment.

B. Error Analysis

Several considerations are important to quantifying
the error in the resonance frequency given the exper-
imental techniques employed in this study. Let us
first investigate the precision error introduced by the
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FIG. 7. Resonant frequencies measured for different resonator
volumes. The curve fit parameters [shown] demonstrates good
agreement with the theoretically expected power law relation-
ship. It exactly matches the theoretical prediction for the ex-
ponent b = −1/2. The theoretical prediction for the scaling

coefficient is B = c
2π

√
A
Le

= 3.98 ± 0.4. The reduced chi-

squared metric is greater than 1 which suggests the error is
underestimated [see Error Analysis section for details].

FIG. 8. Resonant frequencies measured for different resonator
neck lengths. The curve fit parameters [shown] demonstrate
loose agreement with the theoretical power law relationship.
The fit exponent is −0.74 which differs from the predicted
exponent b = −1/2 by approximately 50%. The thoeretical

scaling coefficient B = c
2π

√
A
V

= 35.05 ± 3.53 also demon-

strates disagreement outside the error margin.

spectrogram. SpectrumView supplies a set of discrete
frequencies resulting from a uniform Discrete Fourier
Transform (DFT) of the audio signal recorded over the
time span of one second. The step-size between these
frequencies is 7.8125 Hz. Therefore the precision of
our frequency measurements is limited to a range of
±∆ν = 7.8125/2 ≈ 3.9 Hz.

Next, let us consider how to assess the error of the
time-averaging processing step involved in reducing the
spectrograms to spectral power distributions. Each time
slice of the spectrogram provides a spectral distribution
with slight variations from one instant to the next due to
noise and other acoustic artifacts. We refer to this as the
statistical error. By tracking where the peak of the distri-
bution appears at each temporal slice, we effectively per-

form multiple measurements of the resonant frequency in
a single spectrogram. The empirical standard deviation
σr of the tracked resonant frequency across time gives a
characterization of the noise.

To take the precision error and statistical error into
account, we model a measurement of the resonant fre-
quency at a single time slice of the spectrogram as a
random variable

F = X + Y

whereX and Y are independent random variables. LetX
be uniformly distributed about the true the resonant fre-
quency νr within a width 2∆νr = 7.8125 corresponding
to the frequency step-size in SpectrumView. Concretely,

X ∼ unif(νr −∆ν, νr + ∆ν)

Let Y be zero-mean Gaussian random noise with variance
σ2
r so,

Y ∼ N (0, σ2
r)

The measurement error for a single time slice is related
to the variance of F . Since X and Y are independent,
we have

Var(F ) = Var(X) + Var(Y )

Hence,

Var(F ) =
∆νr

3
+ σ2

r (4)

Therefore, we take the error of the resonant frequency
measurement to be σF =

√
Var(F ). This formulation

of the error was used to create the error bars shown in
Figures 7, 8. It could be argued that because the spec-
trograms are time-averaged the resonant frequency er-
ror should be the standard error SE = σF /

√
Nt where

Nt is the number of temporal samples in the spectro-
gram. However, applying this formulation produced er-
ror bounds that were unrealistically small. This study
errs on the side of caution and instead uses the standard
deviation of a single temporal slice σF .

C. Q Factor Analysis

The Q factor provides an idea of how much damping
there is in the Helmholtz resonator. Qualitatively it ex-
presses how long the resonator will sustain its sound once
the experimenter stops blowing air over the opening. It
is defined as

Q =
νr

FWHM(νr)
(5)
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and relates the width of the resonance peak to the res-
onance frequency. To extract the Q factors, a gaussian
was locally fit to the peaks of each spectral power distri-
bution. An example is shown in Figure 9.

FIG. 9. An illustration of locally fitting a gaussian to a spec-
tral peak at the resonant frequency. Each gaussian was fit
using 10 data points centered about the resonance frequency
(5 before, 5 after). The FWHM was calculated from the stan-
dard deviation of the gaussian as σ

√
8 log 2.

As addressed in the section on theory, the Helmholtz
resonator can be modeled as a block-spring system. In-
corporating damping, the equation of motion for the air
column representing the block becomes

mẍ+ dẋ+ kx = 0 (6)

where d is the linear damping coefficient. It is known
result in mechanics that the Q factor for the damped
harmonic oscillator is

Q =

√
mk

d
(7)

Therefore, we can interpret low Q-factors to indicate high
damping and high Q-factors to indicate low damping.

Figure 10 plots the computed Q factors for each res-
onance peak for all resonator configurations explored in
both experiments (volume and neck length modulation).
The choice of a linear fit for the data follows from the
linear form of equation 5. Inspecting the slope of the
fit, we can extract a measure of the average bandwidth
δω = 1

0.02 = 50 Hz, which is proportional to the damping
coefficient d by equation 7.

V. CONCLUSION

An experimental study of the relationship between the
resonance frequency of a Helmholtz resonator and two of
its geometric parameters is presented. The cavity vol-
ume and the neck length of the resonator are found to

FIG. 10. A linear fit to Q factors of the measured resonance
peaks. The slope of the fit is related to the damping of the
oscillator.

have an appreciable effect on the resonance frequency.
We employ spectral analysis techniques to identify res-
onance frequencies for different choices of the geometric
parameters. A theory of Helmholtz resonators modeled
as a block-spring system motivates curve fitting measure-
ments of the resonance frequencies to a power law.

Specifically, our experimental method recovers the
cavity volume relationship well with νr(V ) = 4.04 ·
V −0.50 closely matching the predicted volume relation-
ship νrV = 3.98 · V −1/2. Our experimental method does
a poor job of recovering the neck length relationship with
νr(Le) = 18.46 · Le−0.74 as opposed to the predicted

νr(Le) = 35.05 · Le−1/2.

We posit that the larger discrepancy between exper-
iment and theory in the power law relationship for the
neck length can be attributed to at least two factors.
First, the copper extensions create an opening diame-
ter (19.8 mm) that is slightly larger than the opening of
the standalone Hornitos bottle (18.5 mm). The analy-
sis treated these diameters the same since their respec-
tive measurement precisions (±1 mm) contained overlap.
However this may have introduced a larger error than
anticipated. Second, the correction factor α in equation
3 is highly dependent on the external geometry of the
neck. A flanged neck opening, like that of the standalone
Hornitos bottle, has a different correction factor than a
flangless neck opening, like that of the copper extensions.
Our analysis did not account for this difference.

Error analysis of the resonance frequencies distilled
from the spectrogram measurements is also provided. We
define each resonance frequency is as a compound ran-
dom variable expressed as a sum of two independent ran-
dom variables that capture the precision error and the
statistical error of the spectrogram measurement. Fi-
nally, we characterize the damping of our resonator by
fitting Q factors as a function of the resonance frequency
via linear regression.

Future studies may consider developing an improved
method for neck length modulation that shares the sim-
plicity of stacked cylindrical extensions, but offers finer
control over the neck length. This way, more measure-
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ments can be collected with a single Helmholtz resonator
platform.
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Appendix A: Derivation of Equation 2

Treating the air as an ideal gas and the resonant pro-
cess as an adiabatic process, we have PV γ = c0 = const.

We wish to see how a small change in pressure (drive
force) supplied by blowing over the opening changes the
volume. Hence differentiating the expression above we
have

dP =
−c0γ
V γ+1

dV = −γ P
V
dV

We can interpret the small change in volume dV as the
amount of air in the neck of the resonator displaced above
and below the opening as it oscillates. Then, dV = Ax
where x is a small displacement. So we have

dp = −γ PAV x

Therefore, the force acting on the mass of air in the

neck is simply F = dPA = −γ PA
2

V x

By Hooke’s Law, the force of a spring-mass system is
proportional to the displacement F = −kx. Therefore,
we can identify the equivalent spring constant k in this

system to be k = γ PA
2

V . Inserting this into 1 yields

νr =
1

2π

√
γPA

ρLV

From the Ideal Gas Law, we have

PV = nRT =

(
ρV

mair

)
RT ⇒ P

ρ
=

RT

mair

where ρ is the air density and mair is the mean molec-
ular weight of air. The speed of sound is also known to
be

c =

√
γRT

mair

Hence, by substituting these new terms into the inter-
mediate expression for νr we recover equation 2 up to a
correction term in the neck length.

νr =
c

2π

√
A

V L

The correction term has been derived for various cir-
cumstances. Interestingly, Lord Rayleigh showed that a
resonator with an infinitely long neck and a resonator
with no neck converge to the same analytic correction
factor α′ = 2

π3/2 . In this study, we use the analytic cor-

rection factor α′ = 8
3π which corresponds to the correc-

tion required for a cylindrical neck with a flanged circular
opening.

Appendix B: Blackman Window

The Blackman window is a known filter used ubiq-
uitously in audio signal processing. It is similar to a
guassian low-pass filter. In the discrete-time regime the
window is defined as

w[n] = a0 − a1 cos
2πn

N
+ a2 cos

4πn

N
(B1)

where a = 0.16 and

a0 =
1− a

2
(B2)

a1 =
1

2
(B3)

a2 =
a

2
(B4)
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