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Abstract

We present an experimental method for determining the speed of trans-
verse waves in soap bubble films founded on the theory of normal modes
for a 2-D elastic membrane. Our method features an electronic system
that acoustically drives oscillations in a circular soap bubble at fixed fre-
quency and optically samples the surface profile using strobed illumina-
tion. By subjecting this thin membrane to a frequency scan and assess-
ing temporal variance in the intensity of reflected light, we detect the
frequencies corresponding to standing-waves. The propagation speed of
transverse waves through the membrane can subsequently be calculated
directly from these characteristic frequencies. Using this approach, we
find the speed of transverse waves in a circular soap bubble membrane
with a 7 cm diameter to be 2.21 ms−1.

1 Introduction

2D wave theory reveals that the normal modes of a circular surface are phys-
ically manifest as standing waves, each with a unique characteristic frequency.
We find that the propagation speed c of transverse waves in the soap bubble
membrane relates to the nth radially-symmetric normal mode and its charac-
teristic frequency fn by,

c = 2π

(
fn
λn

)
(1)

Thus the object of our experimental method is identifying standing waves and
their characteristic frequencies.

The remainder of Part 1 provides theoretical background relevant to the
experimental method. Part 2 describes the experimental design and circuitry.
Part 3 presents and analyzes the intensity data acquired using our electronic
system. Part 4 assesses the accuracy of our experimental method by comparing
results to reference values.

1.1 Relevant 2D Wave Theory

Arbitrary vibrations in a 2-D membrane with a fixed circular boundary of radius
r = a can be decomposed into a linear combination of normal modes. Due
to the geometry of our model system, it is convenient to express the normal
modes as solutions to the 2-D wave equation in cylindrical coordinates. In this
coordinate system, we define the origin to be coincident with the centroid of
the circular boundary and the z-axis to be oriented perpendicular to the plane
of the boundary. The vertical displacement of the membrane at any instant
is then naturally a function of the radial and azimuthal coordinates, u(r, φ, t).
For experimental convenience, we restrict our focus to situations where the
membrane exhibits radial symmetry: u(r, φ, t) −→ u(r, t). Without azimuthal
dependence the 2-D wave equation takes the form,
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Since the membrane is fixed at the perimeter we impose the physical boundary
condition,

u(a, t) = 0 (3)

Solutions to Eqn. 2 in the separable form Ψ(r, t) = R(r)T (t) constitute normal
modes of the system and are derived fully in [1]. For brevity, we restate the
general solution for a radially-symmetric membrane below without derivation.

Radially Symmetric Solution:

u(r, t) =

∞∑
n=1

(Ancos(cλnt) +Bnsin(cλnt))J0(λnr) (4)

where the coefficients of the time-dependent terms are defined as,

An =
2

a2J2
1 (αn)

∫ a

0

f(r)J0(λnr)rdr (5a)

Bn =
2

cαnaJ2
1 (αn)

∫ a

0

g(r)J0(λnr)rdr (5b)

and the initial conditions at time t = 0 are defined as,

f(r) = u(r, 0) (6a)

g(r) =
∂

∂t
u(r, 0) (6b)

Examining the series in Eqn. 4, the radial component for each term is the 0th-
Order Bessel Function of the first kind, J0(λnr) (Fig. 1). The constant λn in
the argument upholds the boundary condition as it is defined to be αn

a where
αn is the nth root of J0 and has units of inverse meters m−1. This way, when
r = a all terms in the series go to zero.

Armed with a general description of the radially-symmetric membrane, we
must point out that the Bessel functions preserve a vital orthogonality property
derived in [2]. ∫ a

0

J0(λmr)J0(λnr)rdr =

{
1
2J

′2
0 (λn) m = n

0 m 6= n
(7)

Comparing the integral in the Eqn. 7 to the integrals in Eqn. 5, it follows
that if the membrane is initially in a single normal mode (i.e. if f(r) or g(r)
are equal to J0(λmr),m = 1, 2, 3... ), the coefficients An and Bn for the time-
dependent terms will be non-zero for only these modes. The time-dependent
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Figure 1: The Bessel Functions of the first kind. The solutions to the 2D wave
equation contain only J0(λnr) which has an infinite number of roots αn

part then just serves to periodically scale the amplitude of the surface described
by the radially-dependent part. This observation is important because it indi-
cates that the normal modes are manifest as standing waves in the membrane.
Moreover, it indicates that each normal mode has a unique characteristic oscil-
lation frequency.

Equating the argument of the sinusoidal time-dependent terms in Eqn. 4 to
the standing-wave frequency, we recover Eqn. 1

cλnt = ωt = 2πfnt

c = 2π

(
fn
λn

)

1.2 Speed of Wave Propagation in Elastic Media

The propagation speed c of transverse waves through an elastic 2D surface can
be derived from Newtons Laws assuming the displacement of the surface is very
small [3]. We restate the conclusions of this derivation below.

c =

√
γ

σ
(8)

Here, γ is the surface tension in the membrane and σ is the surface density. The
two quantities on the right-hand side of the equality are easily measurable and
can be used to validate the wave speed found using Eqn. 1.
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2 Experimental Design

2.1 Summary of Design Operation

Our experimental system employs a cymatic technique to distinguish between
standing waves and transient waves. Under strobed illumination standing waves
’become’ fixed surfaces; provided the strobe frequency matches the characteristic
frequency. In other words, the topography of the membrane appears unchang-
ing. In contrast, transient waves appear erratic under strobed illumination.
The starkly different optical effects that these two wave regimes produce when
exposed to strobed illumination can therefore be be exploited to distinguish
between them. For standing waves, we can expect the distribution of reflected
light intensity over all solid angles above the membrane to remain approximately
constant across instances when the strobe light is on. For transient waves, we
can expect the intensity distribution to vary substantially over time. Guided by
these assumptions, our electronic system is designed to measure the temporal
change in the intensity of reflected light coming off of the surface of soap bubble
membrane.

We excite the soap bubble membrane into its normal modes by subjecting
it to a sinusoidal acoustic drive generated with a speaker. Synchronously, a
square-wave drive with equal frequency is sent to an LED, creating the strobe
effect. A photodiode placed above the surface and tilted parallel to the angle
of reflection continuously transmits intensity information to a data acquisition
board (Fig. 2).

Figure 2: An illustration of the configuration for the primary components of the
experimental design.
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2.2 The Circuit

The circuit designed for this system (Fig. 3) serves as the interface between
the DAQ and the physical phenomena at play in the membrane. The sine-wave
(AO-0) and square-wave (AO-1) signals generated by the DAQ are inherently
discretized. While this is a non-issue for the square-wave signal, the sine-wave
signal requires low-pass filtering to smooth away any step-wise features. Thus,
the signal is first corrected with a second-order RC low-pass filter designed to
have a cutoff frequency equal to 482 Hz - roughly double the maximum frequency
in our scan range.

The impedance of the speaker was measured to be 4Ω. As the DAQ alone
cannot supply sufficient current to preserve a constant peak voltage drop across
such a low-impedance component, we decouple the DAQ from the speaker via
a push-pull amplifier with a 10× gain. This ensures that the speaker head
displacement (the volume) is consistent for all drive frequencies. Under this
configuration we found that the Vpp of the acoustic drive signal sent to the
speaker remained consistent through the frequency scan range (Fig. 4).

Figure 3: Circuit diagram of data acquisition system.

2.3 Signal Control and Sampling

Two LabVIEW programs (shown in Fig. 6 and Fig. 7) were written to control
the signals sent from the DAQ output channels. Using these tools we subject
the membrane to an acoustic frequency scan between 10 : 205 Hz incrementing
in 1 Hz steps. The DAQ was configured to transmit and write signals at 10
kHz. This is well above the Nyquist rate for all frequencies traversed in the
scan. For each frequency, we sampled continuously for 5 seconds, amounting to
a total of 50k samples per frequency. These programs enable precise control over
various signal parameters including frequency, amplitude, phase, and waveform.
Importantly, the phase of the strobe is offset to optically sample standing wave
at the peak of its oscillation which is π/2 rads out of phase with the drive
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Figure 4: Amplitude response of the sinusoidal acoustic drive. Displayed voltage
measurements are Vpp

frequency when in resonance (Fig. 5). This is presumably when the rate-of-
change in the standing wave’s transverse motion is at a minimum, lending to a
more consistent light intensity distribution above the membrane. A summary
of the experimental signal and sampling settings is shown in Table 1.

Table 1: Drive Signals and Sampling Details

Acoustic drive Vpp 4.66 V
LED drive Vpp 10 V
LED drive duty-cycle 25%
DAQ sample rate 10 kHz
Frequency scan range 10− 205 Hz
Samples per frequency 50 k
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Figure 5: A graphical illustration of the phase and frequency relationships be-
tween the acoustic drive signal, the strobe signal, and a resonant standing wave.
The strobe is set to optically sample the standing wave around the peak of
its oscillation. Around this point the velocity of the transverse motion in the
membrane is at a minimum, so the temporal variation of the reflected light
distribution is similarly minimal.

Figure 6: Front panel and back panel for our LabVIEW program DriveDe-
vices.vi. This program controls the DAQ output signal parameters.
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Figure 7: Front panel and back panel for our labAVIEW program FreqScan.vi.
This program controls the frequency scan parameters and writes the intensity
data.

3 Data Acquisition and Analysis

The decision to restrict the focus of our investigation to the radially-symmetric
normal modes of the membrane stems from the realization that these modes
are easy to visually observe and classify in an experimental setting compared to
normal modes with azimuthal dependence. Within the frequency scan, we see
the first six radially-symmetric modes appear near the drive frequencies listed
in Table 2. Validating the accuracy of our mode-detection algorithm becomes
tenable given our visual observations of the radially-symmetric modes. The
algorithm designed to process our temporal intensity data seeks to rediscover
these characteristic frequencies; hence determining the propagation speed of
transverse waves through the soap bubble medium. A high-level summary of
the steps involved in our data processing pipeline is provided below.

Data Processing Pipeline Summary:

1. Bin the temporal intensity measurements by drive frequency

2. Splice and concatenate the measurements to isolate signal when the strobe
light is on

3. Digitally low-pass filter the signals to remove high-frequency noise above
their drive frequency

4. Compute the temporal variance of the intensity for each signal

5. Search for the transverse wave speed that would minimize the sum of
variances among the first 6 characteristic frequencies
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3.1 Raw Measurement Pre-Processing

On their own, the raw intensity measurements collected for each drive frequency
reveal little about the presence of a standing wave in the membrane due to
the strobed illumination. Two processing steps are conducted to the intensity
data collected for each drive frequency in preparation for the analysis. First,
moments in the data acquisition timeline where the strobe light is on are spliced
and concatenated (Fig. 8). Intensity measurements corresponding to the time
where light is off are useless. Second, the concatenated signal is digitally low-
pass filtered above the drive frequency, effectively removing noise (Fig. 9).
This second step is executed because we only expect to see physically relevant
phenomena varying at the timescales of the acoustic drive for standing waves.
Any higher frequency content is noise in the signal that may affect the analysis.

Figure 8: Spliced signals (red points) extracted from raw intensity signals (blue
points) for an arbitrary subset of frequencies in the scan range. The spliced
signals correspond to moments where the LED is on and illuminating the soap
bubble membrane.
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Figure 9: Comparison of the concatenated signal before (blue points) and after
(green points) applying a digital low-pass filter with cutoff frequency equal to
the drive frequency for noise removal. The subset of drive frequencies from the
scan shown here is arbitrary.

3.2 Analysis

The temporal variance of the concatenated intensity signal serves as a quanti-
tative measure of how constant the reflected light distribution is over time. By
extension, it indicates whether or not the membrane exhibits a standing wave at
a particular drive frequency. Fig. 10 shows the variance in reflected light inten-
sity all drive frequencies in the scan. For characteristic frequencies of standing
waves, we expect the variance to be small compared to transient waves. It is
important to note that standing waves with azimuthal dependence also appear
in the frequency scan. This poses a challenge to isolating the characteristic
frequencies corresponding only to the radially-symmetric modes. To solve this,
we pose a minimization problem which exploits knowledge of the relative sepa-
ration between the roots of J0.

Minimization Problem:
Let us define I : I(c), a function of the transverse wave speed through the
membrane, as

10



I(c) =

6∑
n=1

V [fn(c)] (9)

V : V [f ] is a vector containing our intensity variance data (Fig. 10) and fn is
the characteristic frequency of the nth radially-symmetric normal mode. Reor-
ganizing Eqn. 1 we see that the characteristic frequencies are solely dependent
on the wave speed

fn =
αn
2πa

c (10)

since the roots αn are known constants and the radius a is an experimental
parameter. The relative separation of the first six roots of J0 are presumed to
be unique and non-redundant among the set of all roots for Bessel functions of
the first kind. The relative positions of the first six characteristic frequencies
are thus rigidly set via Eqn. 10. Varying c effectively scales these separations.
By exploring different values for c and assessing the total intensity variance of
the resulting fn’s given by Fig. 10, we can identify a scaling for which the total
intensity variance is a minimum. This amounts to searching for the wave speed
c for which I(c) is a minimum.

c∗ = arg min
c

I(c) = arg min
c

=

6∑
n=1

V
[⌊ αn

2πa
c
⌋]

(11)

I(c) is not convex so instead of using optimization techniques, we computa-
tionally conduct a naive search for the minimizing value of c over the domain
of wave speeds (scalings) that permit all six characteristic frequencies to exist
within the frequency scan range.

fscanmin

α1
≤ c

2πa
≤ fscanmax

α6

The results of the search are shown graphically in Fig. 11. From this analysis,
we conclude that the speed of propagation for transverse waves through the soap
bubble membrane is 2.21 ms−1. For comparison, we plot the sets of observed
and computed characteristic frequencies in Fig. 12 along with their respective
temporal intensity variances.

Characteristic Frequencies f1 Hz f2 Hz f3 Hz f4 Hz f5 Hz f6 Hz c ms−1

Observed 27 62 97 129 167 202 2.45
Computed 24 55 87 119 150 182 2.21

Table 2: Comparison of characteristic frequencies for first six radially-symmetric
normal modes found using visual observation and intensity variance data. The
reference and computed transverse wave propagation speeds resulting from these
characteristic frequencies are also shown (2.45ms−1 and 2.21ms−1 respectively).
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Figure 10: Temporal variance of the reflected light intensity for all drive fre-
quencies in the range 10-205Hz. For normal modes, the the temporal variance
is expected to be minimal.

Figure 11: Objective function for finding transverse wave speed through soap
bubble
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Figure 12: Comparison of the temporal intensity variances for characteristic fre-
quencies f1 through f6 corresponding to the first six radially-symmetric modes
identified via direct observation and our experimental approach.
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4 Discussion

4.1 Experimental Results

We find the speed of transverse waves in a 7cm diameter soap bubble membrane
to be 2.21ms−1 using the method proposed in this report. To assess the accu-
racy of our method, we compare our result to a reference speed calculated from
the characteristic frequencies of the first six radially-symmetric modes visually
observed in the frequency scan. Our reference speed is determined by averag-
ing the solutions to Eqn. 1 for all observed characteristic frequencies, yielding
2.45ms−1. The difference between the computed speed and the reference speed
constitutes a 10% error.

Another assessment of our method’s fidelity compares the disparity between
the observed and computed characteristic frequencies themselves. Examining
Table 2 and Fig. 12, we see that the greatest disagreement is 20 Hz correspond-
ing to f6 while the minimum disagreement is 3 Hz corresponding to f1. Gen-
erally, the discrepancy grows for higher values of n. Interestingly our method
consistently undershoots the expected As it currently stands, the method pre-
sented herein offers a way of approximating the propagation speed of transverse
waves in soap bubbles. In concluding, we suggest ways in which the method
could be further refined.

4.2 Future Improvements

1. An additional validation step that was implied in the introduction involves
measuring the constants in Eqn. 8 to determine an alternative reference
speed independent of resonance-based techniques. While we did attempt
to calculate this alternative reference speed to include in the report, we
realized that we had incorrectly executed the procedure described in [4] to
measure the constants. Consequently, the calculated reference speed was
incompatible with our experimental results.

2. After collecting our data we realized that we neglected to account for
the intrinsic frequency-dependent phase shift introduced to the acoustic
drive signal by the second-order RC low-pass filter in our circuit. The
frequency-dependent phase shift introduced by the filter is,

δ(f) = −2 arctan(2πfRC)

This means that the strobe was not illuminating standing waves in the
membrane at the peak of their oscillations as suggested in Fig. 5. This only
slightly affects the constancy of the concatenated intensity measurements
for standing waves. Still, the difference in temporal intensity variance
between transient and standing waves would likely be more pronounced if
the strobe offset properly accounted for the filter’s effect.

3. The 1 Hz increment used for scanning through the acoustic drive frequency
range is somewhat coarse. It is unlikely that the characteristic frequencies
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of normal modes lie precisely at integer frequencies. Therefore, a poten-
tial improvement would simply be to decrease the size of the frequency
increment, say perhaps to 0.1 Hz. This would ensure that the true char-
acteristic frequencies of the membrane are more accurately identified.

4. Variations in the soap bubble surface density can be more rigorously char-
acterized. Due to evaporation the concentration of surfactant in the bub-
ble soap solution may vary over the course of the experimental period.
Moreover, the bubble will inevitably pop over the course of experimen-
tal trials. Ensuring the surface density of the bubble remains consistent
across these trials may produce more reliable data.

5 Supplementary Materials

• Data figures

• MATLAB scripts

• Hardware and system setup images

** See attached figures and images **

References

[1] Asmar, Nakhle H. Partial Differential Equations with Fourier Series and
Boundary Value Problems 2nd ed. Chapter 4: Partial Differential Equations
In Polar and Cylindrical Coordinates [pp. 193-268] (2000).

[2] Young, Peter. UCSC Physics 116C Lecture Notes: The Orthogonality Rela-
tion Satisfied by Bessel Functions (2009).
http://physics.ucsc.edu/~peter/116C/bess_orthog.pdf

[3] Morin, David. Waves. Chapter 7: 2D Waves and other topics. (Publication
Pending)
https://scholar.harvard.edu/david-morin/books

[4] Sorensen, Carl D. Measuring the Surface Tensions of Soap Bubbles Brigham
Young University
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/

19920021050.pdf

15

http://physics.ucsc.edu/~peter/116C/bess_orthog.pdf
https://scholar.harvard.edu/david-morin/books
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19920021050.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19920021050.pdf

	Introduction
	Relevant 2D Wave Theory
	Speed of Wave Propagation in Elastic Media

	Experimental Design
	Summary of Design Operation
	The Circuit
	Signal Control and Sampling

	Data Acquisition and Analysis
	Raw Measurement Pre-Processing
	Analysis

	Discussion
	Experimental Results
	Future Improvements

	Supplementary Materials

