Optical Diffractive Neural Networks for Sub-Rayleigh Object Classification

Nico Deshler'-*, Jacob Trzaska'**, Itay Ozer':, Wenhua He':, Amit Ashok’", and Saikat Guha'

"Wyant College of Optical Sciences, University of Arizona

Abstract. We perform image classification for objects smaller than the Rayleigh resolution limit using diffrac-
tive optical neural networks. We also compare the performance of this technique to that of a digital classifier
trained on spatial mode sorting measurements and a classifier trained on direct detection measurements.

1 Introduction

All-optical diffractive neural networks (ONNs) are analog
optical computing devices that can perform passive
image classification at the speed of light. [1] These
devices are composed of a series of learned phase masks
that transform the incident electromagnetic field into
a probability distribution over the classes. The phase
masks are learned offline in simulation before being
deployed in the real world with spatial light modulators or
3D-printed diffractive plates. Previous ONN architectures
have classified handwritten digits with up to 93.39%
accuracy (5-layer system), a performance comparable
to the state-of-the-art classification accuracy (99.77%)
achieved with convolutional neural networks.

The physics underpinning ONNs are reminiscent of
the multiplane light converter (MPLC) which has been
used to experimentally demultiplex a monochromatic op-
tical field into a collection of orthogonal spatial modes.
Recently, the quantum imaging community found that op-
tical mode sorting poses a viable measurement technique
for successfully estimating features of a scene that are
smaller than the Rayeligh resolution limit of the imaging
system. In this work we seek to unite ONNs with the
insights from the quantum imaging community to create
an all-optical classifier for identifying objects beyond the
diffraction limit. We also endeavor to provide a quantum
information-theoretic justification for the success of this
implementation. Finally we compare our ONN classifier
to two alternative neural networks - one which is trained on
Hermite-Gauss mode-sorting measurements, and another
which is trained on direct detection measurements.

2 Theory

Consider a diffractive neural network consisting of N
phase planes as shown in figure [ The objective of this
network is to classify a monochromatic input field into one
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of K classes. Taking £ = 1,2,...,N to be an index over
phase planes, we define the optical field immediately to
the left (upstream) and right (downstream) of the £ phase
plane to be (//5,_) and c,lrg') respectively. For thin diffractive
elements these fields are related to each other through a
point-wise application of the phase mask shown in equa-
tion[Il

WP y) = 0y () (1)

The z-coordinates are implied by the index as the
previously-defined fields coincide with the phase planes.
Between adjacent planes, the field propagates according
to Rayleigh-Sommerfeld diffraction. In this work, we as-
sume that each phase element is a square with side length
L so that the plane-to-plane mapping is given by equation
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where k = 27/ A is the wavenumber, and z,, z¢, are the

axial positions of the adjacent planes. Equation [2]is a 2D

convolution with the Huygens kernel,
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For notational convenience, we define a propagation
operator P, mapping the outgoing field of plane ¢ to the
incoming field of plane ¢ + 1.

Wiy = Py = hewory? @)
A visual representation of this mapping is given in fig-
ure 2| Given a known input field w(l_) incident on the first
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Figure 1. The system diagram for a diffractive optical neural
network. The object is assumed to be at infinity and the first
phase plane is taken to be at the back focal distance of the imag-
ing system. The light propagates from plane to plane under
the Rayleigh-Sommerfield diffraction equation, accruing a point-
wise phase modulation at each plane. The detector is partitioned
into regions of equal area, one for each class in the training data.

phase plane, the field at the detector plane ¢ can be ex-
pressed as alternating applications of phase masking fol-
lowed by propagation.
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To perform classification, the detector is segmented
into K mutually exclusive (non-overlapping) regions of
equivalent area, one associated with each class. The rel-
ative light intensity in each segment relates to the proba-
bility of each class through the softmax function.
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where v € RX is a column vector containing the cumu-
lative intensity measured in the detector segment with do-
main S; and p € RX is the discrete probability distribution
over the classes given the input field. The goal of a ONN
is to optimize the phase functions ¢, so as to minimize a
given loss function that depends on the probabilities over
the classes. In the next section we move towards a dis-
crete representation of the system to facilitate employing
computational machine-learning techniques.

3 Feed-Forward Network

The system is modelled as a discrete feed-forward net-
work. Unlike traditional neural networks, optical neural
networks involve purely linear operations without non-
linear activation functions. In this regard, using the term
’neural network’ to describe ONNSs is somewhat of a mis-
nomer as there is a strong departure from mathematical
equivalence these optical systems and their digital counter-
parts. In fact, it is precisely the non-linear activation func-
tions in digital neural networks which grant them power
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Figure 2. A depiction of the outgoing ’weights’ from each
diffractive neuron (phase plane pixel). Layer ¢ couples to layer
¢ + 1 via convolution with the rayleigh-sommerfield diffraction
kernel.

as generalized function estimators. While optical neural
networks do not have non-linear elements, they do enjoy
and additional degree of freedom from which to extract
information, namely the phase of the light. That said, dig-
ital neural networks with complex-valued weights would
enjoy the same degree of freedom.

3.1 Discretization

In analogy to digital neural networks, we will introduce the
notion of a 'neuron’ by discretizing each plane into pixels.
For simplicity we model each phase plane as a square grid
composed of M x M pixels so that pixel widthis A = L/M.
To discretize the functions at each phase plane, we take
each pixel to be the average of the continuous function
over the area of the pixel centered at (x,, y,,) where x,, =
-(L-Am)/2, y = —(L-Am)/2,andn,m=1,....M
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Next, we vectorize the discretized functions by con-
verting them into M? X 1 column-vectors. Defining the
function x = vec(X) as that which takes the column-major
vectorization of a matrix X, we have

) = vecy'™[n,m]) (8a)
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Correspondingly, we put all of the Huygens convolu-
tion kernels into a M? x M? matrix where each column of
H, is the vectorized version of the kernel at shift location
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where k', , = vec(h[Xy,Ym;Xw,ymw]. This is the
so-called ’Toeplitz matrix’ of the convolution (Toeplitz
Matrix Represenation of Convolution) Propagation of the
field between adjacent planes is then simply a matrix-
vector multiplication
=
We may also define the phase mask matrices matrix

Ap = diag(exp(iq}g)). Then the forward model from the

input field l/l(l_) to the detector ¥p can be written entirely
via matrix-vector multiplication.

¥p = HyAy - HiAy!” (10)

As mentioned previously, to perform classification the
detector is segmented into K mutually exclusive regions,
one for each class. Our measurement of interest is the total
intensity in each region. Let S; € RY*M be a binary mask
for the detector pixels associated with class k. Vectorizing
each mask s; = vec(Sy) and collecting them into a matrix
S € REM we have

s=| (11)
T
with which we can express the cumulative intensity in
each region as,

v=SWol (12)
where |y p|> = (Y}, © ¥p). From here the probabilities
are computed with the softmax function

p = softmax(v)

and we choose the class with highest probability to be
our final classification of the input.

3.2 Requirements for Fully-Connected Layers

For a diffractive optical networks to be ’fully-connected’
we require that the inter-plane spacing be large enough that
the field emitted from any part of one layer 'reaches’ all
parts of the adjacent layer. This amounts to ensuring that
the magnitude of the normalized Rayleigh-Sommerfeld
kernel is greater than a dimensionless threshold value
7 € [0,1]. This threshold value is a design choice set
by the user which trades off connectivity (larger ) with
light throughput (lower 7). Since the magnitude of the
Rayleigh-Sommerfeld kernel is strongest at the points of
minimum separation rp;, = 0, = (z¢+] — Z¢) and uni-
formly decays for greater separations, we need only im-
pose the threshold requirement for the largest neuron-to-
neuron distance. The maximum neuron-to-neuron dis-

tance is the distance connecting opposite corners of ad-
jacent layers 7,4y = 4/2L? + 62. Hence a fully connected

network must satisfy the inequality

|h(rmux)| (rmin )3 /12 + (27Trmax)2 >
et R
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at all layers. If L >> A, then the square root reduces to
mar and we find the requirement,
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Note that the left hand side of equation [I3]is maximal
in the limit as the inter-plane spacing J, approaches in-
finity. This agrees with our intuition that as the planes get
further apart, light leaving from any point at one plane will
reach any point on the adjacent plane.

4 Backpropagation
4.1 Loss Function

In this work we train the diffractive network against the
cross-entropy loss. Let x¥) € CM**! be a training sample
of the input field ¢\~ with one-hot class label vector y €
RXX! where we are using the superscript () to indicate the
training sample index. Feeding x) through the network
results in the class probabilities p¥’ € RXX!. The cross-
entropy loss is given by equation [T4]

M
£0=-3 P log pl? = - log p? (14)
k=1

where k; is the index of the non-zero element in the
one-hot label. We minimize the loss with respect to the
phase parameters ¢, by running gradient descent. The
derivative of the cross-entropy loss for probabilities com-
puted with the softmax function is [2]],
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4.2 Gradient Descent

In the gradient descent algorithm we iteratively update our
parameters of interest so as to minimize the loss via

i 2 gl _ o 9L (15)
Oe gl
where @ > 0 is the (tunable) learning rate and super-
script [i] denotes the iteration index. The derivatives of
the loss with respect to the phase parameters ¢, can be
computed using the backpropagation algorithm. The ini-
tial partial derivatives are given in equation[I6]
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where we have elected to exclusively consider partial
derivatives involving real quantities only. Performing the
chain-rule for intermediate derivatives involves complex
differentiation which we can avoid for the purposes of this
work.
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where we have defined the intermediate propagator
from plane ¢ to plane N (for £ < N) as
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The equations in [I7] are each derived in appendix [A]
Note that the phase in equation appears implicitly
through the A, term. We may further reduce equation
using the property of diagonal matrices acting to the left
and right
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Now, we look to combine all of the partial derivatives
to get a closed-form for the gradient of the phase. First
let us define s” = (p — y)’S € R™’. Then, the complete
gradient of the loss with respect to the phase at layer ¢ is,

oL o T(=
50 2s" Re{iy ;) © Proy) (19)
= 2Reli & [wpp! O 0 P} 20)
% B . N )y » .
[ML - 2Re{z ; ST [0S 1Pk, J]}
@1
= 2Re{i!//(€_)[j] Z s[klyp k1P NIk, j]}
k
22)
oL . T(o) T
= o6, = 2Re{u/1€ G(q P(_w)} (23)

where in the last line we have defined q = s © ¥7,.
Examining the term in parenthesis we see that this ap-
pears to be something like the propagator acting on an

T

input (qTPgﬁN) = Pl \q = AH] ---AyH}yq, how-
ever now we have the transpose of the Toeplitz matrices
acting on the vector q. It turns out that the convolution
matrices HZT = H, are symmetric (See derivation in Ap-
pendix D). This allows us to write the derivative purely
in terms of convolutions which drastically reduces space-
complexity (i.e. we don’t need to store enormous Toeplitz

matrices). Therefore, we find that the complete derivative
can be written as,

o
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The advantage of this representation is that we have
defined the complete derivative entirely in terms of con-
volutions. This allows us to forgo storing matrices of di-
mensions M? x M? during the forward step which can be
computationally prohibitive when the phase planes have
large dimensionality.

5 Optimal Detector Segmentation

Recall that we define the cumulative intensity in a detector
segment associate with class k as

v = s; Yol (24)

where s]{ is an indicator vector for the pixels in the
segmented detector region associated with class k. This re-
quires an ad-hoc prescription of the detector regions which
places an unnecessary constraint on the network. We may
instead choose to learn the detector partitions along with
the phase masks. To do so, we relax the constraint that
the vectors s,{ have to be non-overlapping indicator vec-
tors (i.e. composed of only ones and zeros). Instead, we
let them be arbitrary real weighting functions over the de-
tector intensity field. Note that these weighting functions
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Figure 3. A block diagram showing the optical feed-forward
neural network architecture. The field incident on each phase
plane is transformed through the blue blocks which represent a
point-wise phase modulation followed by a diffraction propaga-
tor. The remaining blocks handle the classification. We train
our model to minimize the cross-entropy loss with respect to the
training labels.

may be positive or negative and they need not be normal-
ized in any way. Physically this amounts to introducing
a positive (or negative) gain on the intensity measured at
each pixel and summing their individual contributions. To
perform this optimization we need to know the derivative
of the loss with respect to the matrix of weights S,

0L 0L v
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where ® represents the tensor product and Ix is the
K x K identity matrix. In total we have,
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6 Spatial Mode-Sorting Classifiers

Suppose we have an imaging system with point-spread
function (PSF) given by Wy(x,y). The field at the image
plane is found by convolving the PSF with the object field
X(j)( X, 4)

PO (x,y) = f f dx'dy’ Yo(x - X,y -y )FO X, y)
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Figure 4. The learned phase masks for a 3-element system
and the loss convergence over the training cycles. Each phase
mask had square length of L = 8um and was discretized into
28x28 pixels (corresponding to the dimensionality of the MNIST
dataset). The distance between adjacent planes planes was J, =
8um giving a connectivity factor of % The wavelength of light
was A = 500nm.

Consider measuring the received field by demultiplex-
ing into the orthonormal spatial modes {¢,,(x,y)}. The
probability of detecting a photon in a given mode is

i = (] (x, )

Assuming a shot-noise limited measurement, we may
express the number of photons counted in each modal bin
as a a random measurement vector with entry-wise Pois-
son statistics.

nY ~ Poiss(Np")

After normalizing the measurements, samples of 11 be-
comes that transformed input data that we use to train the

neural/ network.
70 = n0); Z n
m

7 Simulated Results
7.1 Pre-Processing MNIST Dataset

The MNIST image dimensions were resized from 28 x 28
pixels using nearest-neighbor interpolation to occupy a
certain number of rayleigh lengths for our optical system.
That is the width of the image w at the input of the 4f sys-
tem is w = @o where o = 1.21974/D. The images were
then rotated the images by 180° and convolved with the
point spread function
(i)
P

PSF(r) = R

where J; is the Bessel function of the first-kind, R is
the radius of the pinhole, f is the focal length of the imag-
ing system and A is the wavelength.
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Figure 5. Examples of super-Rayleigh inputs (col. 1), detector
outputs (col. 2), detector segment energies, (col. 3), and associ-
ated class probabilities (col. 4) for example test scenes. Note that
the two test images for digit ‘4’ (row 2,3) have substantially dif-
ferent class probability distributions. Row 2 is classified weakly
as digit ‘9" while row 3 is classified strongly as digit '4’. We
suspect that this is fundamentally because the forward model for
a ONN is linear. Therefore, while humans perceptually attend
to small discontinuities in the digits when classifying, the ONN
model makes little distinction between shapes with minor differ-
ences in discontinuity. As a conceptual example, consider the
perceptual difference between the numbers 8 and 9 in a seven-
segment display (digital clock display). The ’distance’ between
these numbers in the display is a single line segment. While per-
ceptually this line-segment makes a profound difference in our
classification, the small ’distance’ between the two numbers is
(in proportion to the matrix determinant) conserved through a
linear map. In the special case of a unitary map, the distances of
the output are exactly equal to the distances of the input. In row
2 for instance, a small line connecting the tips of the ‘4" would
perceptually convert the digit into a '9’. Conversely, removing
the top-most edge of the '9” would perceptually convert the digit
into a ‘4’. However the linearity of the forward model makes lit-
tle distinction between presence or absence of this line segment.

8 Experimental Results

Surface | zp41 — 2o [mm] | Connectivity T
PM1 - -
PM2 556 1
PM3 556 1
Detector 850 1

Experimental Variables
1. wavelength 532 nm
2. 4f-System focal length 200 mm

3. aperture diameter 400 um

4. SLM phase mask dimensions 300 x 300
5. SLM pixel pitch 8 um

6. EMCCD dimensions

7. EMCCD pixel pitch 16 um

9 Diffractive Neural Networks with
Non-Linear y° Layers

Other non-linear ONNSs [? ]

10 Quantum Chernoff Bound
A Backpropagation Derivatives

Here we derive equations in The first two derivatives

are trivial. The derivation for %= can be found in [2]] while

the derivation for % can be found in the Matrix Cook-
2

book [3]]. The third derivative ‘9“'/;%' will be our focus here.

We analyze the equation by components and then interpret
the result to get a matrix-vector form.
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the final phase operator A, has been omitted.
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Therefore, the complete expression inside the Re op-
eration is given by,
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We see that every row in the matrix Py_,y is multiplied
by the entries in §7, while every column in the same matrix

= i [p1Ponlp, W [g]

is multiplied by the entries in 1/1}_) . Hence we can drop the
indices and compactly write the derivative,

Wp

e y = idiag(y})Peovdiagy!”)

In total we arrive at equation [I7¢]
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All of the partial derivatives are real, as required.
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B Complex Differentiation

Implementing traditional back-propagation involves com-
puting intermediate gradients for each operation in the
forward model. In this system, all of the fields and the
phase masks are complex-valued vectors. Hence we must
invoke the notion of a complex derivative. For a com-
plex number z = x + iy, the Cauchy-Riemann Theorem
states that the derivative df/dz of a complex function
f(@ = u(x,y) + iv(x,y) exists if and only if its real and
imaginary components are continuously differentiable and
satisfy the equations
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If the derivative indeed exists, then it may be computed
using,

(@) = uy +ivy = v, — iuy,

Differentiation with respect to functions of complex
vectors and matrices can be found in [4]. Interestingly,
the complex derivative diz fl) = diz(z*z) does not exist for
z # 0. This suggests that we have no way of computing
0W,¥p)/0yp as an intermediate derivative. For this rea-
son, in equation [I6] we consider the chain-rule expansion
of gradients for real-valued quantities only.

C Tensor Contraction for
Backpropagating Derivatives

Let A be an array of dimension [ay,...,a,] and B be an
array of dimensions [by,...,b,]. The derivative 0A/dB is
another array of dimension [ay,...,a,, by,...,b,] as ev-
ery element in A must be differentiated with respect to ev-
ery element in B. In general we will by convention set the
first dimensions of the derivative array to be equal to those
of the numerator in the derivative, and the last dimensions
to be equal to those of the denominator. Backpropaga-
tion involves combining multiple partial derivatives as pre-
scribed by the chain rule. To do so, implementing ten-
sor contraction in an array-based manner is central to ef-
ficiently computing derivatives. In general, we must con-
tract (at most) two tensors at a time to compute gradients.
Here will we present the general method for doing this.
Suppose we wish to compute

0A  0A OB
aC ~ 0BAIC
It is ambiguous from the notation above how we are
supposed to combine elements in the right hand side in
order to compute the derivative tensor on the left hand side.
It is revealing to look at the dimensionalities of the pieces
in the equation.

aA—>[a a,,c csl
aC 1s:-5Up, 1se+-5Cg
0A
a_Bﬁ[alv"-’an’bh""bm]
0B

- [b],...,bm,C],...,Cs]

ac

We can now imagine promoting either array to a shared
higher-dimensional space by padding the end of the di-
mensions of g—g by s singletons and pushing the dimen-
sions of g—g to the right by n singletons.

Pad Dimensionality by s

3B - lai,...,a,b1,....,0u,1...,1]
Push Dimensionality by n

OB

3C = [1,....1,b1,....bp,cC1,...,C5]

Contracting the tensors then simply amounts to tak-
ing their point-wise multiplication and summing over the
shared dimensions n + 1 to n + m which have sizes equal
to the b;’s.

aA_Sm(6A®68[+1 + ])
ac "M actT M

This is a simple algorithm for contraction of tensors
involved in a chain rule computation. A more general
method for contracting any two tensors requires slightly
more bookkeeping as it is not obvious which dimensions
are meant to be matched.

D Convolution Toeplitz Matrices are
Anti-Symmetric for the
Rayleigh-Sommerfeld Kernel

WLOG, the discretized convolution kernel that takes the
field between sequential layers 1 and 2 is

-z 1 1 ) .
r2 (27rr * il expikr)

r=AN —n)? + (g —m)? + (22 — 21)/A)?

hlng, my;ny, mo] =

where A is the pixel pitch. To define the convolution
operation as a Toeplitz matrix, we linearize the indices
jl = (n|,I’I1]) and jz = (I’lz,mz) so that

Hj j, = hlni,my;ny, my)

Therefore, the matrix elements of the transpose of the
Toeplitz matrix are,

T .
Hjljz =Hjj = hlna, ma;ny, m]

= hlny,my;ny,my] = Hj j,
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